This is an old revision of this page, as edited by Jytdog (talk | contribs) at 05:36, 7 August 2015 (→Use: ce). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 05:36, 7 August 2015 by Jytdog (talk | contribs) (→Use: ce)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Not to be confused with glyphosate.Names | |
---|---|
IUPAC name (RS)-2-Amino-4-(hydroxy(methyl)phosphonoyl)butanoic acid | |
Other names Phosphinothricin | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.051.893 |
EC Number |
|
KEGG | |
PubChem CID | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C5H12NO4P |
Molar mass | 181.128 g·mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Glufosinate or its ammonium salt DL-phosphinothricin is a broad-spectrum systemic herbicide with the chemical formula C5H15N2O4P. It irreversibly inhibits glutamine synthetase, an enzyme necessary for the production of glutamine and for ammonia detoxification. Application of glufosinate to plants leads to reduced glutamine and elevated ammonia levels in tissues, halting photosynthesis, resulting in plant death. It is found in many non-selective systemic herbicides such as Basta, Rely, Finale, Ignite, Challenge, and Liberty.
Use
Glufosinate was discovered by scientists at Hoechst in the 1970s.
Glufosinate is a broad-spectrum herbicide that is used to control important weeds such as morning glories, hemp sesbania (Sesbania bispinosa), Pennsylvania smartweed (Polygonum pensylvanicum) and yellow nutsedge similar to glyphosate. It is applied to young plants during early development for full effectiveness. It is sold in formulations brands, such as Basta, Rely, Finale, Challenge and Liberty.
Glufosinate is typically used in three situations as an herbicide:
- directed sprays for weed control, including in genetically modified crops
- use as a crop desiccation to facilitate harvesting
Glufosinate also has shown to provide some protection against various plant diseases, as it also acts to kill fungi and bacteria on contact.
Genetically modified crops
Most glufosinate is used within the United States is with genetically modified crops.
Glufosinate-resistance was first commercialized in canola in 1995 and has since been commercialized in other crops such as corn (1997), cotton (2004) and soybeans (2011). Utilizing the bar gene from Streptomyces hygroscopicus or the pat gene from Streptomyces viridochromeogenes, crops are transformed to resist the herbicidal properties of the chemical. The two genes encode highly homogenous phosphinothricin acetyltransferases that catalyze N-acetylation of glufosinate, converting it into a compound that does not inhibit glutamine synthetase. Use of the bar or pat genes produces a very high level of resistance to the herbicide throughout the plant's life.
Genetically modified crops have been developed that are resistant to glufosinate. The gene which gives resistance to glufosinate is a bar or pat gene which was first isolated from two species of Streptomyces bacteria. There are glufosinate-resistant transgenic varieties of several crops, including cotton, canola, corn, soybean, sugarbeet, and rice. Of these, canola, cotton, soybean and maize are currently on the market. This includes Bayer's LibertyLink genes, used in over 100 hybrids.
In response to Monsanto's hugely successful Roundup Ready crops, Bayer Crop Science released its own herbicide tolerant crops. The range of crops tolerant to the herbicide glufosinate include cotton, soybean, canola and corn. These crops are also known as Liberty Link crops.
One advantage to producing Liberty Link crops is that any glyphosate resistance encountered in problematic weeds, such as rye grass, is overcome due to glufosinate having a completely different mode of action.
Mode of action
Phosphinothricin is a glutamine synthetase inhibitor that binds to the glutamate site. Glufosinate-treated plants die due to a buildup of ammonia and corresponding decrease in pH in the thylakoid lumen, leading to the uncoupling of photophosphorylation. The uncoupling of photophosphorylation causes the production of reactive oxygen species, lipid peroxidation, and membrane destruction.
Phosphinothricin is produced by various species of actinomycetes as a component of non-ribosomally synthesized peptides, for example, the tripeptide bialaphos from Streptomyces viridochromeogenes. Bialaphos is hydrolyzed to L-phosphinothricin which directly acts as the irreversible inhibitor of glutamine synthetase (GS). Inhibition of this enzyme causes a buildup of ammonia (NH3), one of its substrates. In chloroplasts, the resulting elevated level of ammonia has a toxic effect. Elevated levels of ammonia are detectable within one hour after application of Phosphinothricin.
Toxicity
Glufosinate was found to be toxic to reproduction and was included in a biocide ban proposed by the Swedish Chemicals Agency and approved by the European Parliament on January 13, 2009.
Exposure to humans in foods
As DL-phosphinothricin is often used as a pre-harvest desiccant, residues can also be found in foods that humans ingest. Such foods include potatoes, peas, beans, corn, wheat, and barley. In addition, the chemical can be passed to humans through animals who are fed contaminated straw. Flour processed from wheat grain that contained traces of DL-phosphinothricin was found to retain 10-100% of the chemicals' residues.
The herbicide is also persistent; it has been found to be prevalent in spinach, radishes, wheat and carrots that were planted 120 days after the treatment of the herbicide. Its persistent nature can also be observed by its half-life which varies from 3 to 70 days depending on the soil type and organic matter content. Residues can remain in frozen food for up to two years and the chemical is not easily destroyed by cooking the food item in boiling water. The EPA classifies the chemical as 'persistent' and 'mobile' based on its lack of degradation and ease of transport through soil.
Exposure limits
There are no exposure limits established by the Occupational Safety & Health Administration or the American Conference of Governmental Industrial Hygienists. The WHO/FAO recommended acceptable daily intake (ADI) for glufosinate is 0.02 mg/kg. The European Food Safety Authority has set an ADI of 0.021 mg/kg. The Acute reference dose (ARfD) for child-bearing women is 0.021 mg/kg.
Regulation
Glufosinate ammonium is a United States Environmental Protection Agency EPA registered chemical. It is also a California registered chemical. It is not banned in any country and it is not a PIC pesticide. There are no exposure limits established by OSHA or the American Conference of Governmental Industrial Hygienists.
References
- ^ Topsy Jewell for Friends of the Earth (December 1998). "Glufosinate ammonium fact sheet". Pesticides News No.42. Retrieved March 2015.
{{cite web}}
: Check date values in:|accessdate=
(help) - Donn, G and Köcher, H. Inhibitors of Glutamine Synthetase. Chapter 4 in Herbicide Classes in Development: Mode of Action, Targets, Genetic Engineering, Chemistry. Eds Peter Böger, Ko Wakabayashi, Kenji Hirai. Springer Science & Business Media, 2012 ISBN 9783642594168
- "The agronomic benefits of glyphosate in Europe" (PDF). Monsanto Europe SA. February 2010. Retrieved 06/02/2013.
{{cite web}}
: Check date values in:|accessdate=
(help) - ^ "Encyclopedia of Agriculture and Food Systems: 5-volume set - Google Books". Books.google.com. 2014-07-29. Retrieved 2015-04-25.
- ^ Nandula, Vijay K (December 2010). "Glyphosate Resistance in Crops and Weeds: History, Development, and Management". John Wiley & Sons. Retrieved March 2015.
{{cite web}}
: Check date values in:|accessdate=
(help) - Herbicide-Resistant Crops: Agricultural, Economic, Environmental, Regulatory ..., Stephen O. Duke
- Summary of Herbicide Mechanism of Action, HRAC and WSSA
- "Neue rechtliche Regelungen für Pflanzenschutzmittel auf EU-Ebene" (PDF). Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV). January 2000. Retrieved 2013-03-22.
- "Interpretation of criteria for approval of active substances in the proposed EU plant protection regulation" (PDF). Swedish Chemicals Agency (KemI). 2008-09-23. Retrieved 2013-03-20.
- "MEPs approve pesticides legislation". 2009-01-13. Retrieved 2013-02-22.
- ^ Watts, Meriel. "Glufosinate Ammonium Monograph" (PDF). Pesticide Action Network Asia and the Pacific. Retrieved 20 April 2015.
- ^ "Chemical Identification and Company Information : DL-Phosphinothricin, Monoammonium Salt" (PDF). Phytotechlab.com. Retrieved 2015-04-25.
- The Rotterdam Convention on Prior Informed Consent (PIC)
External links
- Bayer's site of LibertyLink crops
- Basta technical guide
- Glufosinate in the Pesticide Properties DataBase (PPDB)
- Glufosinate-ammonium in the Pesticide Properties DataBase (PPDB)
- Glufosinate-P in the Pesticide Properties DataBase (PPDB)