Misplaced Pages

Photoacoustic imaging

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 206.167.168.128 (talk) at 18:47, 21 July 2016 (Breast cancer diagnosis: Reference to figure deleted (no figure)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 18:47, 21 July 2016 by 206.167.168.128 (talk) (Breast cancer diagnosis: Reference to figure deleted (no figure))(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Schematic illustration of photoacoustic imaging.

Photoacoustic imaging (optoacoustic imaging) is a biomedical imaging modality based on the photoacoustic effect. In photoacoustic imaging, non-ionizing laser pulses are delivered into biological tissues (when radio frequency pulses are used, the technology is referred to as thermoacoustic imaging). Some of the delivered energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband (i.e. MHz) ultrasonic emission. The generated ultrasonic waves are detected by ultrasonic transducers and then analyzed to produce images. It is known that optical absorption is closely associated with physiological properties, such as hemoglobin concentration and oxygen saturation. As a result, the magnitude of the ultrasonic emission (i.e. photoacoustic signal), which is proportional to the local energy deposition, reveals physiologically specific optical absorption contrast. 2D or 3D images of the targeted areas can then be formed. Fig. 1 is a schematic illustration showing the basic principles of photoacoustic imaging.

Biomedical imaging

Fig. 2. Absorption spectra of oxy- and deoxy-hemoglobin.

The optical absorption in biological tissues can be due to endogenous molecules such as hemoglobin or melanin, or exogenously delivered contrast agents. As an example, Fig. 2 shows the optical absorption spectra of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) in the visible and near infrared region. Since blood usually has orders of magnitude higher absorption than surrounding tissues, there is sufficient endogenous contrast for photoacoustic imaging to visualize blood vessels. Recent studies have shown that photoacoustic imaging can be used in vivo for tumor angiogenesis monitoring, blood oxygenation mapping, functional brain imaging, skin melanoma detection, methemoglobin measuring, etc.

Δf Primary contrast Δz δz δx Speed
Hz mm µm µm Mvx/s
Photoacoustic microscopy 50 M Optical absorption 3 15 45 0.5
Photoacoustic tomography 5 M Optical absorption 50 700 700 0.5
Confocal microscopy Fluorescence, scattering 0.2 3-20 0.3-3 10-100
Two-photon microscopy Fluorescence 0.5-1.0 1-10 0.3-3 10-100
Optical coherence tomography 300 T Optical scattering 1-2 0.5-10 1-10 20-4.000
Scanning Laser Acoustic Microscopy 300 M Ultrasonic scattering 1-2 20 20 10
Acoustic microscopy 50 M Ultrasonic scattering 20 20-100 80-160 0.1
Ultrasonography 5 M Ultrasonic scattering 60 300 300 1
Table 1. Comparison of contrast mechanisms, penetration depth (Δz), axial resolution (δz), lateral resolution (δx=δy) and imaging speed of confocal microscopy, two-photon microscopy, optical coherence tomography (300 THz), ultrasound microscopy (50 MHz), ultrasound imaging (5 MHz), photoacoustic microscopy (50 MHz), and photoacoustic tomography (3.5 MHz). Speeds in megavoxel per second of non-parallel techniques.

Two types of photoacoustic imaging systems, photoacoustic/thermoacoustic computed tomography (also known as photoacoustic/thermoacoustic tomography, i.e., PAT/TAT) and photoacoustic microscopy (PAM), have been developed. A typical PAT system uses an unfocused ultrasound detector to acquire the photoacoustic signals, and the image is reconstructed by inversely solving the photoacoustic equations. A PAM system, on the other hand, uses a spherically focused ultrasound detector with 2D point-by-point scanning, and requires no reconstruction algorithm.

Photoacoustic computed tomography

General equation

Given the heating function H ( r , t ) {\displaystyle H({\vec {r}},t)} , the generation and propagation of photoacoustic wave pressure p ( r , t ) {\displaystyle p({\vec {r}},t)} in an acoustically homogeneous inviscid medium is governed by

2 p ( r , t ) 1 v s 2 2 t 2 p ( r , t ) = β C p t H ( r , t ) ( 1 ) , {\displaystyle \nabla ^{2}p({\vec {r}},t)-{\frac {1}{v_{s}^{2}}}{\frac {\partial ^{2}}{\partial {t^{2}}}}p({\vec {r}},t)=-{\frac {\beta }{C_{p}}}{\frac {\partial }{\partial t}}H({\vec {r}},t)\qquad \qquad \quad \quad (1),}

where v s {\displaystyle v_{s}} is the speed of sound in medium, β {\displaystyle \beta } is the thermal expansion coefficient, and C p {\displaystyle C_{p}} is the specific heat capacity at constant pressure. Eq. (1) holds under thermal confinement to ensure that heat conduction is negligible during the laser pulse excitation. The thermal confinement occurs when the laser pulsewidth is much shorter than the thermal relaxation time.

The forward solution of Eq. (1) is given by

p ( r , t ) = β 4 π C p d r | r r | H ( r , t ) t | t = t | r r | / v s ( 2 ) . {\displaystyle \left.p({\vec {r}},t)={\frac {\beta }{4\pi C_{p}}}\int {\frac {d{\vec {r'}}}{|{\vec {r}}-{\vec {r'}}|}}{\frac {\partial H({\vec {r'}},t')}{\partial t'}}\right|_{t'=t-|{\vec {r}}-{\vec {r'}}|/v_{s}}\qquad \quad \,\,\,\,(2).}

In stress confinement, which occurs when the laser pulsewidth is much shorter than the stress relaxation time, Eq. (2) can be further derived as

p ( r , t ) = 1 4 π v s 2 t [ 1 v s t d r p 0 ( r ) δ ( t | r r | v s ) ] ( 3 ) , {\displaystyle p({\vec {r}},t)={\frac {1}{4\pi v_{s}^{2}}}{\frac {\partial }{\partial t}}\left\qquad \,(3),}

where p 0 {\displaystyle p_{0}} is the initial photoacoustic pressure.

Universal reconstruction algorithm

In a PAT system, the acoustic pressure is detected by scanning an ultrasonic transducer over a surface that encloses the photoacoustic source. To reconstruct the internal source distribution, we need to solve the inverse problem of equation (3) (i.e. to obtain p 0 {\displaystyle p_{0}} ). A representative method applied for PAT reconstruction is known as the universal backprojection algorithm. This method is suitable for three imaging geometries: planar, spherical, and cylindrical surfaces.

The universal back projection formula is

p 0 ( r ) = Ω 0 d Ω 0 Ω 0 [ 2 p ( r 0 , v s t ) 2 v s t p ( r 0 , v s t ) ( v s t ) ] | t = | r r 0 | / v s , ( 4 ) , {\displaystyle \left.p_{0}({\vec {r}})=\int _{\Omega _{0}}{\frac {d\Omega _{0}}{\Omega _{0}}}\left\right|_{t=|{\vec {r}}-{\vec {r_{0}}}|/v_{s}},\qquad \quad (4),}

where Ω 0 {\displaystyle \Omega _{0}} is the solid angle subtended by the entire surface S 0 {\displaystyle S_{0}} with respect to the reconstruction point r {\displaystyle {\vec {r}}} inside S 0 {\displaystyle S_{0}} , and

d Ω 0 = d S 0 | r r 0 | 2 n ^ 0 s . ( r r 0 ) | r r 0 | . {\displaystyle d\Omega _{0}={\frac {dS_{0}}{|{\vec {r}}-{\vec {r_{0}}}|^{2}}}{\frac {{\hat {n}}_{0}^{s}.({\vec {r}}-{\vec {r_{0}}})}{|{\vec {r}}-{\vec {r_{0}}}|}}.}

Simple system

A simple PAT/TAT/OAT system is shown in the left part of Fig. 3. The laser beam is expanded and diffused to cover the whole region of interest. Photoacoustic waves are generated proportional to the distribution of optical absorption in the target, and are detected by a single scanned ultrasonic transducer. A TAT/OAT system is the same as PAT except that it uses a microwave excitation source instead of a laser. Although single-element transducers have been employed in these two systems, the detection scheme can be extended to use ultrasound arrays as well.

Biomedical applications

Intrinsic optical or microwave absorption contrast and diffraction-limited high spatial resolution of ultrasound make PAT and TAT promising imaging modalities for wide biomedical applications:

Brain lesion detection

Soft tissues with different optical absorption properties in the brain can be clearly identified by PAT..

Hemodynamics monitoring

Since HbO2 and Hb are the dominant absorbing compounds in biological tissues in the visible spectral range, multiple wavelength photoacoustic measurements can be used to reveal the relative concentration of these two chromophores. Thus, the relative total concentration of hemoglobin (HbT) and the hemoglobin oxygen saturation (sO2) can be derived. Therefore, cerebral hemodynamic changes associated with brain function can be successfully detected with PAT.

Breast cancer diagnosis

By utilizing low scattered microwave for excitation, TAT is capable of penetrating thick (several cm) biological tissues with less than mm spatial resolution. Since cancerous tissue and normal tissue have very different responses to radio frequency radiation, TAT has great potential in early breast cancer diagnosis.

Photoacoustic microscopy

Fig. 8 shows a representative photoacoustic microscopy (PAM) set-up. A tunable dye laser is pumped by a Q-switched pulsed Nd:YAG laser. A short laser pulse at a certain wavelength between 532-770 nm is generated to irradiate the target tissue to induce acoustic pressure waves. Laser pulses of ~6 mJ/cm at the focus will be delivered at 10 Hz repetition rate. An optical fiber of 0.6 mm core diameter is coaxially positioned on a three-dimensional mechanical stage with changeable ultrasonic transducers between 25-75 MHz.

The imaging depth of PAM is mainly limited by the ultrasonic attenuation. The spatial (i.e. axial and lateral) resolutions depend on the ultrasonic transducer used. An ultrasonic transducer with high central frequency and broader bandwidth are chosen to obtain high axial resolution. The lateral resolution is determined by the focal diameter of the transducer. For instance, a 50 MHz ultrasonic transducer provides 15 micrometre axial and 45 micrometre lateral resolution with ~3 mm imaging depth.

PAM has multiple important applications in functional imaging. Two examples are shown in Figs. 9 and 10. PAM can detect changes in oxygenated/deoxygenated hemoglobin in small vessels. As shown in Fig. 9, arterioles (red) and venules (blue) are clearly delineated with high spatial resolution. Fig. 10 shows the capability of PAM to image skin melanoma by using dual wavelength to obtain the morphological relationship between the melanoma and its surrounding blood vessels structures in vivo.

See also

References

  1. A. Grinvald; et al. (1986). "Functional architecture of cortex revealed by optical imaging of intrinsic signals". Nature. 324 (6095): 361–364. doi:10.1038/324361a0. PMID 3785405.
  2. ^ M. Xu; L.H. Wang (2006). "Photoacoustic imaging in biomedicine". Review of Scientific Instruments. 77 (4): 041101. doi:10.1063/1.2195024.
  3. Optical Properties Spectra
  4. ^ L.H. Wang; H.I. Wu (2007). Biomedical Optics. Wiley. ISBN 978-0-471-74304-0.
  5. M. Xu; et al. (2005). "Universal back-projection algorithm for photoacoustic-computed tomography". Physical Review E. 71 (1): 016706. doi:10.1103/PhysRevE.71.016706.
  6. ^ X. Wang; et al. (2003). "Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo". Nature Biotechnology. 21 (7): 803–806. doi:10.1038/nbt839. PMID 12808463.
  7. X. Wang; et al. (2006). "Non-invasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography". Journal of Biomedical Optics. 11 (2): 024015. doi:10.1117/1.2192804. PMID 16674205.
  8. G. Ku; et al. (2005). "Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging". Technology in Cancer Research and Treatment. 4 (5): 559–566. PMID 16173826.
  9. ^ Zhang, H. F.; et al. (2006). "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging". Nature Biotechnology. 24 (7): 848–851. doi:10.1038/nbt1220. PMID 16823374.
  10. Zhang, H. F.; et al. (2007). "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy". Applied Physics Letters. 90 (5): 053901. doi:10.1063/1.2435697.

External links

Category: