Misplaced Pages

Boeing 777

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by AmericanLemming (talk | contribs) at 19:46, 5 August 2016 (another ce). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 19:46, 5 August 2016 by AmericanLemming (talk | contribs) (another ce)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Boeing 777
Aircraft landing approach. Front quarter view of twin-engine jet in flight with flaps and landing gear extended.
Boeing 777-200ER of United Airlines, the launch customer of the Boeing 777
Role Wide-body jet airlinerType of aircraft
National origin United States
Manufacturer Boeing Commercial Airplanes
First flight June 12, 1994
Introduction June 7, 1995, with United Airlines
Status In service
Primary users Emirates
United Airlines
Cathay Pacific
Air France
Produced 1993–present
Number built 1,412 through June 2016
Developed into Boeing 777X

The Boeing 777 is a family of long-range wide-body twin-engine jet airliners developed and manufactured by Boeing Commercial Airplanes. It is the world's largest twinjet and has a typical seating capacity for 314 to 451 passengers, with a range of 5,235 to 9,500 nautical miles (9,695 to 17,594 km). Commonly referred to as the "Triple Seven", its distinguishing features include the largest-diameter turbofan engines of any aircraft, six wheels on each main landing gear, fully circular fuselage cross-section, and a blade-shaped tail cone. Developed in consultation with eight major airlines, the 777 was designed to replace older wide-body airliners and bridge the capacity difference between Boeing's 767 and 747. As Boeing's first fly-by-wire airliner, it has computer-mediated controls. It was also the first commercial aircraft to be designed entirely with computer-aided design.

The 777 is produced in two fuselage lengths as of 2014. The original 777-200 variant entered commercial service in 1995, followed by the extended-range 777-200ER in 1997. The stretched 777-300, which is 33.25 ft (10.1 m) longer, followed in 1998. The longer-range 777-300ER and 777-200LR variants entered service in 2004 and 2006 respectively, while the 777F, a freighter version, debuted in February 2009; these variants all feature General Electric GE90 engines and extended raked wingtips. The earlier 777-200, -200ER and -300 versions are equipped with GE90, Pratt & Whitney PW4000, or Rolls-Royce Trent 800 engines. The 777-200LR is the world's longest-range airliner, able to fly more than halfway around the globe, and holds the record for the longest distance flown non-stop by a commercial aircraft.

The 777 first entered commercial service with United Airlines on June 7, 1995. It has received more orders than any other wide-body airliner; as of June 2016, 60 customers had placed orders for 1,893 aircraft of all variants, with 1,412 delivered. The most common and successful variant is the 777-300ER with 660 delivered and 800 orders; Emirates operates the largest 777 fleet, with 144 passenger and freighter aircraft as of July 2015. The 777 has been involved in six hull losses as of August 2016; the Asiana Airlines Flight 214 accident in July 2013 was its first fatal crash in 18 years of service.

The 777 ranks as one of Boeing's best-selling models. Airlines have acquired the type as a comparatively fuel-efficient alternative to other wide-body jets and have increasingly deployed the aircraft on long-haul transoceanic routes. Direct market competitors include the Airbus A330-300, newly launched Airbus A350 XWB, and the out-of-production A340 and McDonnell Douglas MD-11. The 787 Dreamliner, which entered service in 2011, shares design features with the 777. In November 2013, Boeing announced the development of upgraded 777-8 and 777-9 variants, collectively named 777X, featuring composite wings and GE9X engines and further technologies developed for the 787. The 777X series is planned to enter service by 2020.

Development

Background

In the early 1970s, the Boeing 747, McDonnell Douglas DC-10, and the Lockheed L-1011 TriStar became the first generation of wide-body passenger airliners to enter service. In 1978, Boeing unveiled three new models: the twin-engine Boeing 757 to replace its venerable 727, the twin-engine 767 to challenge the Airbus A300, and a trijet 777 concept to compete with the DC-10 and L-1011. The mid-size 757 and 767 launched to market success, due in part to 1980s extended-range twin-engine operational performance standards (ETOPS) regulations governing transoceanic twinjet operations. These regulations allowed twin-engine airliners to make ocean crossings at up to three hours' distance from emergency diversionary airports. Under ETOPS rules, airlines began operating the 767 on long-distance overseas routes that did not require the capacity of larger airliners. The trijet 777 was later dropped, following marketing studies that favored the 757 and 767 variants. Boeing was left with a size and range gap in its product line between the 767-300ER and the 747-400.

By the late 1980s, DC-10 and L-1011 models were approaching retirement age, prompting manufacturers to develop replacement designs. McDonnell Douglas was working on the MD-11, a stretched and upgraded successor of the DC-10, while Airbus was developing their A330 and A340. In 1986, Boeing unveiled proposals for an enlarged 767, tentatively named 767-X, to target the replacement market for first-generation wide-bodies like the DC-10, and to complement existing 767 and 747 models in the company lineup. The initial proposal featured a longer fuselage and larger wings than the existing 767, along with winglets. Later plans expanded the fuselage cross-section but retained the existing 767 flight deck, nose, and other elements.

Airline customers were unimpressed with the 767-X proposals, and instead wanted an even wider fuselage cross-section, fully flexible interior configurations, short- to intercontinental-range capability, and an operating cost lower than any 767 stretch. Airline planners' requirements for larger aircraft had become increasingly specific, adding to the heightened competition among aircraft manufacturers. By 1988, Boeing realized that the only answer was a new design, which became the 777 twinjet. The company opted for the twin-engine configuration given past design successes, projected engine developments, and reduced-cost benefits. On December 8, 1989, Boeing began issuing offers to airlines for the 777.

Design effort

A flight deck, from behind the two pilots' seats. A center console lies in between the seats, in front is an instrument panel with several displays, and light enters through the forward windows.
Glass cockpit of a Transaero Airlines 777-200ER

The design phase for the new twinjet was different from Boeing's previous commercial jetliners. For the first time, eight major airlines – All Nippon Airways, American Airlines, British Airways, Cathay Pacific, Delta Air Lines, Japan Airlines, Qantas, and United Airlines – had a role in the development. This was a departure from industry practice, where manufacturers typically designed aircraft with minimal customer input. The eight airlines that contributed to the design process became known within Boeing as the "Working Together" group. At the first group meeting in January 1990, a 23-page questionnaire was distributed to the airlines, asking what each wanted in the design. By March 1990, Boeing and the airlines had decided upon a basic design configuration: a cabin cross-section close to the 747's, capacity up to 325 passengers, flexible interiors, a glass cockpit, fly-by-wire controls, and 10 percent better seat-mile costs than the A330 and MD-11. Boeing selected its Everett factory in Washington, home of 747 production, as the 777's final assembly site.

On October 14, 1990, United Airlines became the 777's launch customer when it placed an order for 34 Pratt & Whitney-powered aircraft valued at US$11 billion with options on an additional 34. The development phase coincided with United's replacement program for its aging DC-10s. United required that the new aircraft be capable of flying three different routes: Chicago to Hawaii, Chicago to Europe, and non-stop from Denver, a hot and high airport, to Hawaii. ETOPS certification was also a priority for United, given the overwater portion of United's Hawaii routes. In January 1993, a team of United developers joined other airline teams and Boeing designers at the Everett factory. The 240 design teams, with up to 40 members each, addressed almost 1,500 design issues with individual aircraft components. The fuselage diameter was increased to suit Cathay Pacific, the baseline model grew longer for All Nippon Airways, and British Airways' input led to added built-in testing and interior flexibility, along with higher operating weight options.

The 777 was the first commercial aircraft designed entirely by computer. Each design drawing was created on a three-dimensional CAD software system known as CATIA, sourced from Dassault Systemes and IBM. This lets engineers assemble a virtual aircraft, in simulation, to check for interference and verify that the thousands of parts fit properly—thus reducing costly rework. Boeing developed their own high-performance visualization system, FlyThru, later called IVT (Integrated Visualization Tool) to support large-scale collaborative engineering design reviews, production illustrations, and other uses of the CAD data outside of engineering. Boeing was initially not convinced of CATIA's abilities and built a physical mock-up of the nose section to verify its results. The test was so successful that additional mock-ups were canceled.

Production and testing

The production process included substantial international content, an unprecedented level of global subcontracting for a Boeing jetliner, later exceeded by the 787. International contributors included Mitsubishi Heavy Industries and Kawasaki Heavy Industries (fuselage panels), Fuji Heavy Industries, Ltd. (center wing section), Hawker de Havilland (elevators), and Aerospace Technologies of Australia (rudder). An agreement between Boeing and the Japan Aircraft Development Corporation, representing Japanese aerospace contractors, made the latter risk-sharing partners for 20 percent of the entire development program. The initial 777-200 model was launched with propulsion options from three manufacturers, General Electric, Pratt & Whitney, and Rolls-Royce, giving the airlines their choice of engines from competing firms. Each manufacturer agreed to develop an engine in the 77,000 lbf (340 kN) and higher thrust class (a measure of jet engine output) for the world's largest twinjet.

Aircraft factory. Rectangular building with six doors, one of which is open to reveal an emerging airliner. The background is a forest; small vehicles and taxiways surround the factory.
An Air India Boeing 777-200LR is rolled out at the Boeing Everett Factory

To accommodate production of its new airliner, Boeing doubled the size of the Everett factory at the cost of nearly US$1.5 billion to provide space for two new assembly lines. New production methodologies were developed, including a turn machine that could rotate fuselage subassemblies 180 degrees, giving workers access to upper body sections. Major assembly of the first aircraft began on January 4, 1993. By the start of production, the program had amassed 118 firm orders, with options for 95 more from 10 airlines. Total investment in the program was estimated at over US$4 billion from Boeing, with an additional US$2 billion from suppliers.

On April 9, 1994, the first 777, line number WA001, was rolled out in a series of 15 ceremonies held during the day to accommodate the 100,000 invited guests. The first flight took place on June 12, 1994, under the command of chief test pilot John E. Cashman. This marked the start of an 11-month flight test program that was more extensive than testing for any previous Boeing model. Nine aircraft fitted with General Electric, Pratt & Whitney, and Rolls-Royce engines were flight tested at locations ranging from the desert airfield at Edwards Air Force Base in California to frigid conditions in Alaska, mainly Fairbanks International Airport. To satisfy ETOPS requirements, eight 180-minute single-engine test flights were performed. The first aircraft built was used by Boeing's nondestructive testing campaign from 1994 to 1996, and provided data for the -200ER and -300 programs. At the successful conclusion of flight testing, the 777 was awarded simultaneous airworthiness certification by the U.S. Federal Aviation Administration (FAA) and European Joint Aviation Authorities (JAA) on April 19, 1995.

Entry into service

Airliner takeoff. The jet's nose is angled upwards as it lifts above the runway, with landing gear still deployed.
The first Boeing 777-200 in commercial service, United Airlines' N777UA, taking off from Amsterdam Airport Schiphol in 2005

Boeing delivered the first 777 to United Airlines on May 15, 1995. The FAA awarded 180-minute ETOPS clearance ("ETOPS-180") for the Pratt & Whitney PW4084-engined aircraft on May 30, 1995, making it the first airliner to carry an ETOPS-180 rating at its entry into service. The first commercial flight took place on June 7, 1995, from London Heathrow Airport to Dulles International Airport near Washington, D.C. Longer ETOPS clearance of 207 minutes was approved in October 1996.

On November 12, 1995, Boeing delivered the first model with General Electric GE90-77B engines to British Airways, which entered service five days later. Initial service was affected by gearbox bearing wear issues, which caused British Airways to temporarily withdraw its 777 fleet from transatlantic service in 1997, returning to full service later that year; General Electric subsequently announced engine upgrades.

The first Rolls-Royce Trent 877-powered aircraft was delivered to Thai Airways International on March 31, 1996, completing the introduction of the three powerplants initially developed for the airliner. Each engine-aircraft combination had secured ETOPS-180 certification from the point of entry into service. By June 1997, orders for the 777 numbered 323 from 25 airlines, including satisfied launch customers that had ordered additional aircraft. Operations performance data established the consistent capabilities of the twinjet over long-haul transoceanic routes, leading to additional sales. By 1998, the 777 fleet had approached 900,000 flight hours. Boeing states that the 777 fleet has a dispatch reliability (rate of departure from the gate with no more than 15 minutes delay due to technical issues) above 99 percent.

Initial derivatives

Airliner final approach. Side view of jet descending in the sky, with landing gear completely extended.
Air New Zealand 777-200ER on final approach

After the original model, Boeing developed an increased gross weight variant of the 777-200 with greater range and payload capability. Initially named 777-200IGW, the 777-200ER first flew on October 7, 1996, received FAA and JAA certification on January 17, 1997, and entered service with British Airways on February 9, 1997. Offering greater long-haul performance, the variant became the most widely ordered version of the aircraft through the early 2000s. On April 2, 1997, a Malaysia Airlines -200ER named "Super Ranger" broke the great circle "distance without landing" record for an airliner by flying eastward from Boeing Field, Seattle to Kuala Lumpur, a distance of 10,823 nautical miles (20,044 km), in 21 hours and 23 minutes.

Following the introduction of the -200ER, Boeing turned its attention to a stretched version of the airliner. On October 16, 1997, the 777-300 made its first flight. At 242.4 ft (73.9 m) in length, the -300 became the longest airliner yet produced (until the A340-600), and had a 20 percent greater overall capacity than the standard length model. The -300 was awarded type certification simultaneously from the FAA and JAA on May 4, 1998, and entered service with launch customer Cathay Pacific on May 27, 1998.

From the program's start, Boeing had considered building ultra-long-range variants. Early plans centered on a 777-100X proposal, a shortened variant of the -200 with reduced weight and increased range, similar to the 747SP. However, the -100X would have carried fewer passengers than the -200 while having similar operating costs, leading to a higher cost per seat. By the late 1990s, design plans shifted to longer-range versions of existing models. A more powerful engine in the 100,000 lbf (440 kN) and higher thrust class was required, leading to talks between Boeing and engine manufacturers. General Electric offered to develop the GE90-115B engine, while Rolls-Royce proposed developing the Trent 8104 engine. In 1999, Boeing announced an agreement with General Electric, beating out rival proposals. Under the deal with General Electric, Boeing agreed to only offer GE90 engines on new 777 versions.

Longer-range models

Aircraft engine, forward-facing view with a Boeing engineer in front to demonstrate the engine's size. The engine's large circular intake contains a center hub with a swirl mark, surrounded by multiple curved fan blades.
GE90 engine mounted on a 777-300ER with a Boeing engineer to show the engine's size. A single GE90 engine has powered the GE test 747 during level flight.

On February 29, 2000, Boeing launched its next-generation twinjet program, initially called 777-X, and began issuing offers to airlines. Development was slowed by an industry downturn during the early 2000s. The first model to emerge from the program, the 777-300ER, was launched with an order for ten aircraft from Air France, along with additional commitments. On February 24, 2003, the -300ER made its first flight, and the FAA and EASA (European Aviation Safety Agency, successor to the JAA) certified the model on March 16, 2004. The first delivery to Air France took place on April 29, 2004. The -300ER, which combined the -300's added capacity with the -200ER's range, became the top-selling 777 variant in the late 2000s, benefitting as airlines replaced comparable four-engine models with twinjets for their lower operating costs.

The second long-range model, the 777-200LR, rolled out on February 15, 2005, and completed its first flight on March 8, 2005. The -200LR was certified by both the FAA and EASA on February 2, 2006, and the first delivery to Pakistan International Airlines occurred on February 26, 2006. On November 10, 2005, the first -200LR set a record for the longest non-stop flight of a passenger airliner by flying 11,664 nautical miles (21,602 km) eastward from Hong Kong to London. Lasting 22 hours and 42 minutes, the flight surpassed the -200LR's standard design range and was logged in the Guinness World Records.

The production freighter model, the 777F, rolled out on May 23, 2008. The maiden flight of the 777F, which used the structural design and engine specifications of the -200LR along with fuel tanks derived from the -300ER, occurred on July 14, 2008. FAA and EASA type certification for the freighter was received on February 6, 2009, and the first delivery to launch customer Air France took place on February 19, 2009.

Initially second to the 747 as Boeing's most profitable jetliner, the 777 became the company's most lucrative model in the 2000s. Program sales accounted for an estimated US$400 million of Boeing's pretax earnings in 2000, US$50 million more than the 747. By 2004, the airliner comprised the bulk of wide-body revenues for the Boeing Commercial Airplanes division. In 2007, orders for second-generation 777 models approached 350 aircraft, and in November of that year, Boeing announced that all production slots were sold out to 2012. The program backlog of 356 orders was valued at US$95 billion at list prices in 2008.

Production updates and improvements

In 2010, Boeing announced plans to increase production from 5 aircraft per month to 7 aircraft per month by mid-2011, and 8.3 per month by early 2013. Complete assembly of each 777-300ER requires 49 days. In November 2011, assembly began on the 1,000th 777, a -300ER model for Emirates; which was rolled out in March 2012. In late 2011, the FAA assigned a common type rating to the 787 and 777, allowing pilots qualified on either aircraft to operate both models, due to related design features. The smaller 787 was the first stage of a replacement aircraft initiative called the Boeing Yellowstone Project. Reportedly, the 777 could eventually be replaced by a new aircraft family, Yellowstone 3, which would draw upon technologies from the 787.

Aircraft takeoff. Quarter view of aircraft ascending in the sky, with landing gear still deployed.
All Nippon Airways 777-300ER taking off

By the late 2000s, the 777 was facing increased potential competition from Airbus' planned A350 XWB and internally from proposed 787 variants, both airliners that promise fuel efficiency improvements. As a consequence, the 777-300ER received an engine and aerodynamics improvement package for reduced drag and weight. In 2010, the variant further received a 5,000 lb (2,300 kg) maximum zero-fuel weight increase, equivalent to a higher payload of 20–25 passengers; its GE90-115B1 engines received a 1–2.5 percent thrust enhancement for increased takeoff weights at higher-altitude airports. More changes were targeted for late 2012, including possible extension of the wingspan, along with other major changes, including a composite wing, new powerplant, and different fuselage lengths. Emirates was reportedly working closely with Boeing on the project, possibly being the launch customer for new 777 versions. China Airlines ordered ten 777-300ER aircraft to replace 747-400s on routes between Taipei and Los Angeles and New York City, telling Aviation Week and Space Technology that the 777-300ER's per seat cost is about 20% lower than the 747's costs (varying due to fuel prices). Four of the 777 aircraft were already flying as of February 2015.

Mindful of the long time required to bring the 777X to the market, Boeing continued to develop improvement packages which improve fuel efficiency, as well as lower prices for the existing product. As of February 2015, the backlog of undelivered 777s totals 278 aircraft, representing just under three years of current production at 8.3 aircraft per month, causing Boeing to ponder the 2018-2020 time frame. In January 2015, United Airlines ordered 10 Boeing 777-300ERs, normally costing around $150 million each but paid around $130 million, a discount to bridge the production gap to the 777X. Boeing has worked with General Electric to offer a 2% improvement in fuel efficiency to new aircraft beginning in 2016. GE will improve the fan module and the high pressure compressor stage-1 blisk in the GE-90-115 turbofan, as well as reduce clearances between the tips of the turbine blades and the shroud during cruise. These improvements, of which the latter is the most important and was derived from work to develop the 787, will, GE says, lower fuel burn by 0.5%. Boeing's wing modification will deliver the remainder. Boeing stated that every 1% improvement in the 777-300ER's fuel burn translates into being able to fly the aircraft another 75 nautical miles on the same load of fuel, or add ten passengers or 2,400 lb of cargo to a "load limited" flight.

In March 2015, additional details of the improvement package were published in Aviation Week & Space Technology. The 777-300ER is to shed 1,800 lb. Boeing will replace the fuselage crown with tie rods and composite integration panels, similar to those used on the 787. New flight control software is to eliminate the need for the tail skid by keeping the tail off the runway surface regardless of the extent to which pilots command the elevators. Boeing is also redesigning the inboard flap fairings to reduce drag by reducing pressure on the underside of the wing. The outboard raked wingtip is to have a divergent trailing edge, described as a"poor man's airfoil" by Boeing; this originally developed for the McDonnell Douglas MD-12 project. Another change involves elevator trim bias. These changes are to increase fuel efficiency and allow airlines to add 14 additional seats to the airplane, increasing per seat fuel efficiency by 5%.

In January of 2016, Boeing confirmed plans to reduce the production rate of the 777 family from 8.3/mo to 7/mo in 2017 to help close the production gap between the 777 and 777X created by a lack of new orders.

777X program

Main article: Boeing 777X

In September 2011, Boeing released more details on proposed third-generation 777 versions, collectively referred to as 777X and tentatively designated 777-8 and 777-9. The 777-9 was to feature a fuselage stretch of 7.0 ft (2.13 m) to a total length of 250 ft 11 in (76.5 m) to accommodate 407 passengers, while the ultra long-range 777-8, a replacement for the 777-200LR, was slated to be 228.17 ft (69.5 m) in length. Wingspan for both models was expected to increase from the current 212 ft 7 in (64.8 m) to 234 ft (71.3 m), and incorporate the use of carbon-fiber-reinforced polymer in its construction. In February 2012, General Electric disclosed studies on a new engine, dubbed the GE9X, to power the 777X. Rolls-Royce and Pratt & Whitney also proposed powerplants for the 777X, including the RB3025 concept, based on the Trent 1000 and Trent XWB engines, and an adaptation of PW1000G engine architecture to produce up to 100,000 lbf (440 kN) of thrust. However, in March 2013 the General Electric GE9X was selected as the exclusive engine to power the 777X.

In May 2013, Boeing's board of directors gave formal permission for its Commercial Airplanes division to start offering the 777X to customers. The 777X program includes two models: the 777-9, which is stretched beyond the length of the 777-300ER, and the 777-8, which is sized close to the 777-300ER but with ultra-long range capability. On September 19, 2013, Lufthansa's supervisory board gave approval to order 34 Boeing 777-9 aircraft to replace their 747-400s, in advance of the program's official launch. In October 2013, Boeing announced that its U.S. facilities in Charleston, Huntsville, Long Beach, Philadelphia, and St. Louis as well as Russian facilities in Moscow would support the 777X design effort.

Boeing officially launched the 777X at the 2013 Dubai Airshow in November 2013, announcing a total of 259 orders and commitments worth more than US$95 billion, constituting the largest product launch by dollar value in the history of commercial aviation. These included orders for 150 aircraft from Emirates, 25 aircraft from Etihad Airways, and 50 aircraft from Qatar Airways; the former two orders encompass both 777-8 and 777-9 variants and the latter is entirely for the 777-9. By April 2014, with cumulative sales surpassing those of the 747, the 777 became the best-selling wide-body airliner; at existing production rates, the aircraft was on track to become the most-delivered wide-body airliner by mid-2016.

Design

Aircraft belly section. Close view of engines, extended landing gear and angled control flaps.
Engines, extended slats, flaps, and landing gear of an American Airlines 777-200ER

Boeing introduced a number of advanced technologies with the 777 design, including fully digital fly-by-wire controls, fully software-configurable avionics, Honeywell LCD glass cockpit flight displays, and the first use of a fiber optic avionics network on a commercial airliner. Boeing made use of work done on the cancelled Boeing 7J7 regional jet, which utilized similar versions of the chosen technologies. In 2003, Boeing began offering the option of cockpit electronic flight bag computer displays. In 2013, Boeing announced that the upgraded 777X models would incorporate airframe, systems, and interior technologies from the 787.

Fly-by-wire

In designing the 777 as its first fly-by-wire commercial aircraft, Boeing decided to retain conventional control yokes rather than change to sidestick controllers as used in many fly-by-wire fighter aircraft and in many Airbus airliners. Along with traditional yoke and rudder controls, the cockpit features a simplified layout that retains similarities to previous Boeing models. The fly-by-wire system also incorporates flight envelope protection, a system that guides pilot inputs within a computer-calculated framework of operating parameters, acting to prevent stalls, overspeeds, and excessively stressful maneuvers. This system can be overridden by the pilot if deemed necessary. The fly-by-wire system is supplemented by mechanical backup.

Airframe and systems

Aircraft landing gear. Six wheel gear on the ground, with attachment assembly and gear door leading up to the aircraft belly.
The six-wheel undercarriage of a Boeing 777-300

The wings on the 777 feature a supercritical airfoil design that is swept back at 31.6 degrees and optimized for cruising at Mach 0.83 (revised upward after flight tests to Mach 0.84). The wings are designed with increased thickness and a longer span than previous airliners, resulting in greater payload and range, improved takeoff performance, and a higher cruising altitude. The wings also serve as fuel storage, with longer-range models able to carry up to 47,890 US gallons (181,300 L) of fuel. This capacity allows the 777-200LR to operate ultra-long-distance, trans-polar routes such as Toronto to Hong Kong. In 2013, a new wing made of composite materials was introduced for the upgraded 777X, with a wider span and design features based on the 787's wings.

Large folding wingtips, 21 feet (6.40 m) long, were offered when the 777 was first launched, to appeal to airlines who might use gates made to accommodate smaller aircraft, but no airline purchased this option. Folding wingtips reemerged as a design feature at the announcement of the upgraded 777X in 2013. Smaller folding wingtips of 11 feet (3.35 m) in length will allow 777X models to use the same airport gates and taxiways as earlier 777s. These smaller folding wingtips are less complex than those proposed for earlier 777s, and internally only affect the wiring needed for wingtip lights.

The airframe incorporates the use of composite materials, which comprise nine percent of its original structural weight (all models outside the 777-8 and 777-9). Elements made from composite material include the cabin floor and rudder. The main fuselage cross-section is circular and tapers rearward into a blade-shaped tail cone with a port-facing auxiliary power unit. The aircraft also features the largest landing gear and the biggest tires ever used in a commercial jetliner. The six-wheel bogies are designed to spread the load of the aircraft over a wide area without requiring an additional centerline gear. This helps reduce weight and simplifies the aircraft's braking and hydraulic systems. Each tire of a 777-300ER six-wheel main landing gear can carry a load of 59,490 lb (26,980 kg), which is heavier than other wide-bodies such as the 747-400. The aircraft has triple redundant hydraulic systems with only one system required for landing. A ram air turbine –a small retractable propeller which can provide emergency power– is also fitted in the wing root fairing.

Interior

Airliner cabin. Rows of seats arranged between two aisles. Each seatback has a monitor; light shines from the sidewalls and overhead bins.
Economy class cabin of Etihad Airways 777-300ER in a 3-3-3 layout

The original 777 interior, also known as the Boeing Signature Interior, features curved panels, larger overhead bins, and indirect lighting. Seating options range from six abreast in first class up to 10 across in economy. The 777's windows were the largest of any current commercial airliner until the 787, and measure 15-inch (380 mm) by 10-inch (250 mm) in size (all models outside the 777-8 and -9). The cabin also features "Flexibility Zones", which entails deliberate placement of water, electrical, pneumatic, and other connection points throughout the interior space, allowing airlines to move seats, galleys, and lavatories quickly and more easily when adjusting cabin arrangements. Several aircraft have also been fitted with VIP interiors for non-airline use. Boeing designed a hydraulically damped toilet seat cover hinge that closes slowly.

Airliner cabin. Rows of seats arranged between two aisles.
EVA Air 777-300ER business class in 1-2-1 herringbone layout

In 2003, Boeing introduced overhead crew rests as an option on the 777. Located above the main cabin and connected via staircases, the forward flight crew rest contains two seats and two bunks, while the aft cabin crew rest features multiple bunks. The Signature Interior has since been adapted for other Boeing wide-body and narrow-body aircraft, including 737NG, 747-400, 757-300, and newer 767 models, including all 767-400ER models. The 747-8 and 767-400ER have also adopted the larger, more rounded windows of the original 777.

In 2011, Flight International reported that Boeing is considering replacing the Signature Interior on the 777 with a new interior similar to that on the 787, as part of a move towards a "common cabin experience" across all Boeing platforms. With the launch of the 777X in 2013, Boeing confirmed that the aircraft would be receiving a new interior featuring 787 cabin elements and larger windows. Further details released in 2014 included re-sculpted cabin sidewalls for greater interior room, noise-dampening technology, and higher cabin humidity.

Variants

Planform view, shortly after departure, of a Saudi Arabian Airlines Boeing 777-200ER

Boeing uses two characteristics, fuselage length and range, to define their 777 models. Fuselage length affects the number of passengers and amount of cargo that can be carried; the 777-200 and derivatives are the base size, and the aircraft was stretched into the 777-300 in 1998. In terms of range, the aircraft has been categorized into three segments based on design criteria. The A-market would cover domestic and regional operations, the B-market would cover routes from Europe to the US West coast and the C-market the longest transpacific routes.

These were initially defined as the following:

  • A-market: up to 4,200 nautical miles (7,800 km)
  • B-market: 6,600 nautical miles (12,200 km)
  • C-market: 7,800 nautical miles (14,400 km)

When referring to different variants, Boeing and airlines often collapse the model number (777) and the variant designator (-200 or -300) into a truncated form (e.g., "772" or "773"). The International Civil Aviation Organization (ICAO) aircraft type designator system adds a preceding manufacturer letter (e.g., "B772" or "B773"). Subsequent to the capacity number, designations may or may not append the range identifier (e.g., 777-300ER as "773ER", "773B", "77W", or "B77W"). These notations may be found in aircraft manuals or airline timetables.

777-200

Aircraft in flight, surrounded by white clouds. Side view of twin-engine jet in the sky.
A 777-200 in Boeing's original livery. Note the tail logos of the aircraft's firm customers beneath the windows

The 777-200 was the initial A-market model. The first -200 was delivered to United Airlines on May 15, 1995. With a maximum range of 5,240 nautical miles (9,700 km), the -200 was chiefly aimed at U.S. domestic airline operators. Nine different -200 customers have taken delivery of 88 aircraft, with 79 in airline service as of July 2015. A British Airways 777-200 became the fastest subsonic New York to London flight at 5 hours and 16 minutes in January 2015 due to strong winds. The competing aircraft from Airbus is the A330-300.

777-200ER

Aircraft during landing approach. Front quarter view of twin-engine jet in flight with flaps and landing gear extended.
El Al 777-200ER landing at London Heathrow Airport

The 777-200ER ("ER" for Extended Range), the B-market version of the -200, was originally known as the 777-200IGW (increased gross weight). The -200ER has additional fuel capacity and an increased maximum takeoff weight (MTOW) over the -200. Aimed at international airlines operating transatlantic routes, the -200ER's maximum range is 7,730 nautical miles (14,320 km). In addition to breaking the eastbound great circle "distance without landing" record, the -200ER also holds the record for the longest ETOPS-related emergency flight diversion (177 minutes under one engine), on a United Airlines flight carrying 255 passengers on March 17, 2003, over the Pacific Ocean.

The first -200ER was delivered to British Airways on February 6, 1997. Singapore Airlines, one of the type's largest customers, ordered over half of its -200ERs with reduced engine thrust specifications (de-rated) for use on medium-length routes. The de-rated engines lower MTOW, which reduces the aircraft's purchase price and landing fees, and can be re-rated to full -200ER standard for long-haul operations. As of June 2016, -200ER deliveries to 33 different customers totaled 422 with no unfilled orders. As of July 2015, 390 examples of the -200ER were in airline service. The competing aircraft from Airbus are the A340-300 and the A350-900.

777-200LR

Aircraft landing approach. Front quarter view of twin-engine jet in flight with flaps and landing gear extended.
Pakistan International Airlines 777-200LR, the first built, on approach to Toronto Pearson International Airport

The 777-200LR ("LR" for Longer Range), the C-market model, became the world's longest-range commercial airliner upon entering service in 2006. Boeing named it Worldliner as it could connect almost any two airports in the world, although it remains subject to ETOPS restrictions. It holds the world record for the longest nonstop flight by a commercial airliner, having a maximum range of 9,500 nautical miles (17,600 km). The -200LR was intended for ultra-long-haul routes such as Los Angeles to Singapore.

Developed alongside the -300ER, the -200LR features an increased MTOW and three optional auxiliary fuel tanks in the rear cargo hold. Other new features include raked wingtips, redesigned main landing gear, and additional structural strengthening. As with the -300ER and 777F, the -200LR is equipped with wingtip extensions of 12.8 ft (3.90 m). The -200LR is powered by GE90-110B1 or GE90-115B turbofans. The first -200LR was delivered to Pakistan International Airlines on February 26, 2006. As of June 2016, eleven different -200LR customers have taken delivery of 59 aircraft, with no unfilled orders. Airlines operated 55 of the -200LR variant as of July 2015. The closest competing aircraft from Airbus was the A340-500HGW.

777-300

Aircraft during landing approach. Front quarter view of twin-engine jet in flight with flaps and landing gear extended.
Emirates 777-300 in the 2006 FIFA World Cup livery on approach to London Heathrow Airport, England

The stretched 777-300 was designed as an A-market replacement for 747-100s and 747-200s. Compared to the older 747s, the stretched 777 has comparable passenger capacity and range, but burns one-third less fuel and has 40 percent lower maintenance costs. The -300 features a 33.3 ft (10.1 m) fuselage stretch over the baseline -200. This allows seating for up to 550 passengers in a single class high-density configuration, an arrangement adopted for heavily trafficked Japanese routes. Because of the aircraft's length, the -300 is equipped with a tailskid and ground maneuvering cameras to aid pilots during taxi. The maximum range is 6,015 nautical miles (11,140 km), allowing the -300 to operate trunk routes previously flown by older 747s.

After being certified simultaneously by the FAA and JAA, the first -300 was delivered to Cathay Pacific on May 21, 1998. Eight -300 customers have taken delivery of 60 aircraft, 58 of which were in service as of July 2015. However, following the introduction of the longer-range -300ER in 2004, operators have selected that variant instead. The -300 has no direct Airbus rival, but the A340-600 was offered in competition.

777-300ER

Aircraft landing approach. Side view of twin-engine jet in flight with flaps and landing gear extended.
Air Canada 777-300ER landing at London Heathrow Airport with flaps deployed

The 777-300ER ("ER" for Extended Range) is the C-market version of the -300. Its higher MTOW and increased fuel capacity permits a maximum range of 7,370 nautical miles (13,650 km) with 396 passengers in a two-class seating arrangement. The 777-300ER features raked and extended wingtips, a strengthened fuselage and wings and a modified main landing gear. Its wings have an aspect ratio of 9.0. It is powered by the GE90-115B turbofan, the most powerful jet engine with a maximum thrust of 115,300 lbf (513 kN). Following flight testing, aerodynamic refinements have reduced fuel burn by an additional 1.4%.

Since its launch, the model has been a primary driver of the twinjet's sales past the rival A330/340 series. Its direct competitors have included the Airbus A340-600 and the A350-1000. Using two engines produces a typical operating cost advantage of around 8–9% for the -300ER over the A340-600. Several airlines have acquired the -300ER as a 747-400 replacement amid rising fuel prices given its 20% fuel burn advantage.

The first -300ER was delivered to Air France on April 29, 2004. The -300ER is the best-selling 777 variant, having surpassed the -200ER in orders in 2010 and deliveries in 2013. As of June 2016, -300ER deliveries to 41 different customers totalled 660, with 140 unfilled orders. In February 2016, 619 -300ERs are in service with 35 operators.

777 Freighter

Side view of aircraft over runway. Runway surfaces in foreground and forest in background.
The first 777 Freighter, destined for Air France, during a test flight

The 777 Freighter (777F) is an all-cargo version of the twinjet, and shares features with the -200LR; these include its airframe, engines, and fuel capacity. With a maximum payload of 226,000 lb (103,000 kg), cargo capacity is similar to the 243,000 lb (110,000 kg) of the 747-200F. The freighter has a range of 4,900 nmi (9,070 km) at maximum payload, although greater range is possible if less cargo weight is carried.

As the aircraft promises improved operating economics compared to older freighters, airlines have viewed the 777F as a replacement for freighters such as the 747-200F, MD-10, and MD-11F. The first 777F was delivered to Air France on February 19, 2009. As of June 2016, 123 freighters had been delivered to 16 different customers, with 35 unfilled orders. Operators had 108 of the 777F in service as of July 2015.

In the 2000s, Boeing began studying the conversion of 777-200ER and -200 passenger airliners into freighters, under the name 777 BCF (Boeing Converted Freighter). The company has been in discussion with several airline customers, including FedEx Express, UPS Airlines, and GE Capital Aviation Services, to provide launch orders for a 777 BCF program.

777-8 and -9

Main article: Boeing 777X

The 777-8 and the larger 777-9, are the two variants which comprise the Boeing 777X program, launched in 2013. Both models incorporate a new carbon-fiber-reinforced polymer wing with folding wingtips, a wider, more comfortable redesigned cabin, and other upgraded systems. Service entry of the first 777X variant, the 777-9, is scheduled for 2020.

Government and corporate

Aircraft landing approach. Front quarter view of twin-engine jet in flight with flaps and landing gear extended.
Abu Dhabi Amiri Flight 777-200ER arriving at London Heathrow Airport
Boeing 777-200LR BBJ. A Boeing 777 Worldliner in VIP configuration

Versions of the 777 have been acquired by government and private customers. The main purpose has been for VIP transport, including as an air transport for heads of state, although the aircraft has also been proposed for other military applications.

  • 777 Business Jet (777 VIP) – the Boeing Business Jet version of the 777 that is sold to corporate customers. Boeing has received orders for 777 VIP aircraft based on the 777-200LR and 777-300ER passenger models. The aircraft are fitted with private jet cabins by third party contractors, and completion may take 3 years.
  • 777 Tanker (KC-777) – the KC-777 is a proposed tanker version of the 777. In September 2006, Boeing announced that it would produce the KC-777 if the United States Air Force (USAF) required a larger tanker than the KC-767, able to transport more cargo or personnel. In April 2007, Boeing offered its 767-based KC-767 Advanced Tanker instead of the KC-777 to replace the smaller Boeing KC-135 Stratotanker under the USAF's KC-X program. Boeing officials have described the KC-777 as suitable for the related KC-Z program to replace the wide-body McDonnell Douglas KC-10 Extender.
  • In 2014, the Japanese government chose to procure two 777-300ERs to serve as the official air transport for the Emperor of Japan and Prime Minister of Japan. The aircraft, to be operated by the Japan Air Self-Defense Force under the callsign Japanese Air Force One, are scheduled to enter service in 2019 and replace two 747-400s. Besides VIP transport, the 777s are also intended for use in emergency relief missions.
  • 777s have served as official government transports for nations including Gabon (VIP-configured 777-200ER), Turkmenistan (VIP-configured 777-200LR), and the United Arab Emirates (VIP-configured 777-200ER and 777-300ER operated by Abu Dhabi Amiri Flight). Prior to returning to power as Prime Minister of Lebanon, Rafic Hariri acquired a 777-200ER as an official transport.
  • In 2014, the USAF examined the possibility of adopting modified 777-300ERs or 777-9Xs to replace the Boeing 747-200 aircraft used as Air Force One. Although the USAF had preferred a four engine aircraft, this was mainly due to precedent (the existing aircraft were purchased when the 767 was just beginning to prove itself with ETOPS; decades later, the 777 and other twin jets established a comparable level of performance as quad-jet aircraft). Ultimately, the air force decided against the 777, and selected instead the Boeing 747-8 to be the next presidential aircraft.

Operators

Aircraft in flight. Aft three-quarter view of twin-engine jet in flight with flaps extended, and upswept wings.Cathay Pacific 777-200 on final approach to Hong Kong International AirportSide view of twin-engine jet at takeoff with flaps and landing gear extended.FedEx Express 777F departing Ted Stevens Anchorage International Airport Main article: List of Boeing 777 operators

Boeing customers that have received the most 777s are ILFC, Emirates, Singapore Airlines, United Airlines, and Air France. Emirates is the largest airline operator as of July 2015, and is the only customer to have operated all 777 variants produced, including the -200, -200ER, -200LR, -300, -300ER, and 777F. The 1,000th 777 off the production line, a -300ER set to be Emirates' 102nd 777, was unveiled at a factory ceremony in March 2012.

A total of 1,265 aircraft (all variants) were in airline service as of July 2015, with Emirates (144), United Airlines (74), Cathay Pacific (68), Air France (66), American Airlines (64), British Airways (58), All Nippon Airways (57), Singapore Airlines (55), and other operators with fewer aircraft of the type.

Orders and deliveries

Main article: List of Boeing 777 orders and deliveries

Template:Boeing 777 Orders and Deliveries

ICAO designation Model series
B772 777-200
777-200ER
B77L 777-200LR
777F
B773 777-300
B77W 777-300ER

Incidents and accidents

Heat exchanger. Circular latticework with an uneven covering of small particles over part of its surface.
Laboratory replication of ice crystals clogging the fuel-oil heat exchanger on a Rolls-Royce Trent 800 engine, from the AAIB report on the BA38 and DL18 incidents

As of August 2016, the 777 has been in 15 aviation accidents and incidents, including five hull-loss accidents, one hull-loss due to criminal act, and three hijackings, for a total of 540 fatalities. The first fatality involving the twinjet occurred in a refueling fire at Denver International Airport on September 5, 2001, during which a ground worker had sustained fatal burns. The aircraft, operated by British Airways, suffered fire damage to the lower wing panels and engine housing; it was later repaired and returned to service.

The type's first hull-loss occurred on January 17, 2008, when British Airways Flight 38, a 777-200ER with Rolls-Royce Trent 895 engines flying from Beijing to London, crash-landed approximately 1,000 feet (300 m) short of Heathrow Airport's runway 27L and slid onto the runway's threshold. There were 47 injuries and no fatalities. The impact damaged the landing gear, wing roots and engines. The aircraft was written off. Upon investigation, the accident was blamed on ice crystals from the fuel system clogging the fuel-oil heat exchanger (FOHE). Two other minor momentary losses of thrust with Trent 895 engines occurred in 2008. Investigators found these were also caused by ice in the fuel clogging the fuel-oil heat exchanger. As a result, the heat exchanger was redesigned.

Boeing 777-200ER, registered 9M-MRO for Malaysia Airlines Flight 370 taking off from Paris in 2011, three years before it disappeared.

The type's second hull-loss occurred on July 29, 2011, when EgyptAir Flight 667 a 777-200ER registered as SU-GBP suffered a cockpit fire while parked at the gate at Cairo International Airport. The plane was successfully evacuated with no injuries, and airport fire teams extinguished the fire. The aircraft sustained structural, heat and smoke damage. This aircraft was written off. Investigators focused on a possible electrical fault with a supply hose in the cockpit crew oxygen system.

On July 6, 2013, Asiana Airlines Flight 214, 777-200ER registered HL7742, crashed while landing at San Francisco International Airport after touching down short of the runway. Surviving passengers and crew evacuated before fire destroyed the aircraft. The crash led to the death of three of the 307 people on board. These were the first fatalities in a crash involving a 777 since entering service in 1995. The NTSB accident investigation concluded in June 2014 that the pilots committed 20 to 30 minor to significant errors in their final approach, and that complexities of the automated controls contributed to the accident.

On March 8, 2014, Malaysia Airlines Flight 370, 777-200ER registered 9M-MRO, carrying 227 passengers and 12 crew, en route from Kuala Lumpur to Beijing was reported missing. Air Traffic Control's last reported coordinates for the aircraft were over the South China Sea at 6°55′15″N 103°34′43″E / 6.92083°N 103.57861°E / 6.92083; 103.57861. After the search for the aircraft began, Malaysia's prime minister announced on March 24, 2014 that after analysis of new satellite data it is now to be assumed "beyond reasonable doubt" that the plane was lost and there were no survivors. As of July 2015, the cause remains unknown, but the Malaysian Government declared it was an accident in January 2015. On July 29, 2015 an aircraft piece was found on the French island of Réunion. The piece was sent to France where it was later identified as the flaperon of a Boeing 777. On August 5, 2015 Malaysian authorities confirmed that the piece was in fact from Flight 370.

On July 17, 2014, Malaysia Airlines Flight 17, a 777-200ER registered 9M-MRD, bound for Kuala Lumpur from Amsterdam broke up in mid-air and crashed in the Donetsk province in eastern Ukraine, after being hit by an anti-aircraft missile. All 298 people (283 passengers and 15 crew) on board were killed. The incident was linked to the ongoing Donbass insurgency in the region. The official accident report, released in October 2015, states that airliner was shot down by a Buk missile from pro-Russian held territory.

On September 8, 2015, British Airways Flight 2276, a 777-200ER registered G-VIIO, caught fire during take-off at Las Vegas McCarran International Airport after a General Electric GE90-85B engine suffered a serious uncontained engine failure. Take-off was aborted and all crew and passengers were evacuated with only minor injuries occurring. Investigators discovered that the engine case had 'multiple breaches'.

On May 27, 2016, on Korean Air Flight 2708, a 777-300, registered HL7534, an engine caught fire before take off at Tokyo International Airport, commonly known as Haneda Airport. Shortly before take-off, the number 1 engine, a Pratt & Whitney PW4000 engine, started to smoke and caught fire. All 17 crew members and 302 passengers evacuated safely. Fire fighters put out the fire within an hour. The incident is under investigation.

On June 27, 2016, Singapore Airlines Flight 368, a 777-300ER, suffered an oil leak in the right engine while en route from Singapore to Milan. It was diverted back to Singapore Changi Airport for an emergency landing. The right engine and wing caught fire during landing roll and sustained serious fire damage. There were no injuries.

On August 3, 2016, Emirates Flight 521, a 777-300 crash-landed at Dubai Airport and the aircraft was subsequently destroyed by the post-crash fire. There were no passenger casualties of the 300 people onboard, however one airport fireman was killed fighting the fire.

Specifications

Specifications by model
Model 777-200 777-200ER 777-200LR 777 Freighter 777-300 777-300ER 777-8 777-9
Cockpit crew Two
Seating capacity,
typical
313 (2-class)
440 (maximum)
N/A
(cargo)
396 (2-class)
550 (maximum)
353 (3-class) 427 (3-class)
Length 209 ft 1 in (63.7 m) 242 ft 4 in (73.9 m) 228 ft 2 in (69.5 m) 250 ft 11 in (76.5 m)
Wingspan 199 ft 11 in (60.9 m) 212 ft 7 in (64.8 m) 199 ft 11 in (60.9 m) 212 ft 7 in (64.8 m) Unfolded: 235 ft 6 in (71.8 m)
Folded: 212 ft 8 in (64.8 m)
Wing sweepback 31.64° TBA
Tail height 60 ft 9 in (18.5 m) 61 ft 1 in (18.6 m) 60 ft 8 in (18.5 m) 64 ft 6 in (19.7 m)
Cabin width 19 ft 3 in (5.87 m) 19 ft 7 in (5.97 m)
Seat width 18.5 in (47.0 cm) in 9 abreast standard economy or 17.2 in (43.7 cm) in 10 abreast high density economy 18 in (45.7 cm) in 10 abreast standard economy
Fuselage width 20 ft 4 in (6.20 m)
Maximum cargo capacity 5,720 cu ft (162 m)
32× LD3
23,051 cu ft (653 m)
37× pallets
7,640 cu ft (216 m)
44× LD3
40× LD3 48× LD3
Operating empty weight 297,300 lb
(134,800 kg)
304,500 lb
(138,100 kg)
320,000 lb
(145,150 kg)
318,300 lb
(144,400 kg)
353,800 lb
(160,500 kg)
370,000 lb
(167,800 kg)
TBA 415,000 lb
(188,241 kg)
Maximum landing weight 445,000 lb
(201,840 kg)
470,000 lb
(213,180 kg)
492,000 lb
(223,168 kg)
575,000 lb
(260,816 kg)
524,000 lb
(237,680 kg)
554,000 lb
(251,290 kg)
TBA 557,000 lb
(252,651 kg)
Maximum takeoff weight
(MTOW)
545,000 lb
(247,200 kg)
656,000 lb
(297,550 kg)
766,000 lb
(347,500 kg)
766,800 lb
(347,800 kg)
660,000 lb
(299,370 kg)
775,000 lb
(351,500 kg)
Typical cruise speed Mach 0.84 (554 mph, 892 km/h, 482 knots) at a cruise altitude of 35,000 ft (11,000 m) TBA
Maximum speed Mach 0.89 (587 mph, 945 km/h, 510 knots) at a cruise altitude of 35,000 ft (11,000 m) TBA
Maximum range
(with maximum payload)
5,240 nmi (9,700 km; 6,030 mi) 7,065 nmi (13,100 km; 8,130 mi) 8,555 nmi (15,800 km; 9,840 mi) 4,970 nmi (9,200 km; 5,720 mi) 6,005 nmi (11,100 km; 6,910 mi) 7,370 nmi (13,600 km; 8,480 mi) 8,700 nmi (16,100 km; 10,000 mi) 7,600 nmi (14,100 km; 8,750 mi)
Takeoff distance at MTOW
(at sea level, ISA)
8,000 ft
2,440 m
11,100 ft
3,380 m
9,200 ft
2,800 m
9,300 ft
2,830 m
10,600 ft
3,230 m
10,000 ft
3,050 m
TBA
Maximum fuel capacity 31,000 US gal
(117,348 L)
45,220 US gal
(171,177 L)
47,890 US gal
(181,283 L)
45,220 US gal
(171,177 L)
47,890 US gal
(181,283 L)
TBA
Service ceiling 43,100 ft (13,140 m)
Engine (×2) PW 4077
RR 877
GE90-77B
PW 4090
RR 895
GE90-94B
GE90-110B1
GE90-115B1
PW 4098
RR 892
GE90-92B/-94B
GE90-115B1 GE9X
Thrust (×2) PW: 77,000 lbf (342 kN)
RR: 76,000 lbf (338 kN)
GE: 77,000 lbf (342 kN)
PW: 90,000 lbf (400 kN)
RR: 93,400 lbf (415 kN)
GE: 93,700 lbf (417 kN)
GE −110B: 110,100 lbf (490 kN)
GE −115B: 115,300 lbf (512 kN)
PW: 98,000 lbf (436 kN)
RR: 92,000 lbf (409 kN)
GE: 92,000/93,700 lbf (409 kN/418 kN)
115,300 lbf (512 kN) 105,000 lbf (470 kN)

Sources: Boeing 777 specification pages, Boeing 777 Airport planning reports, initial 777X data and other sources.

Comparison chart showing front, side, and top views of the 777.
Diagram of Boeing 777 variants with front, cross-section, side, and top views: 777-200ER on left, 777-300ER on right.

See also

Related development

Aircraft of comparable role, configuration, and era

Related lists

References

Citations

  1. ^ Cite error: The named reference 777_O_D_summ was invoked but never defined (see the help page).
  2. Robertson, David (March 13, 2009). "Workhorse Jet Has Been Huge Success with Airlines that Want to Cut Costs". The Times. London, England, United Kingdom: Times Newspapers. Archived from the original on June 12, 2011. Retrieved March 20, 2009. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help); Unknown parameter |subscription= ignored (|url-access= suggested) (help)
  3. Grantham, Russell (February 29, 2008). "Delta's new Boeing 777 Can Fly Farther, Carry More". The Atlanta Journal-Constitution. Delta will put the new "triple seven" — as airline folks call the jet — into service March 8.
  4. Birtles 1998, pp. 52
  5. ^ Norris & Wagner 1996, p. 89
  6. ^ Glenday 2007, p. 200
  7. ^ Phillips, Don (November 10, 2005). "Flight of Boeing's 777 Breaks Distance Record". The New York Times. International Herald Tribune. Archived from the original on February 3, 2015. Retrieved October 14, 2013.
  8. ^ "World Airliner Census" (PDF). Flight. 2015.
  9. Wells & Rodrigues 2004, p. 146
  10. "The 1980s Generation". Time. August 14, 1978. Archived from the original on November 18, 2007. Retrieved July 19, 2008.
  11. ^ Weiner, Eric (December 19, 1990). "New Boeing Airliner Shaped by the Airlines". The New York Times. Retrieved May 8, 2011.
  12. Eden 2008, pp. 98, 102–103
  13. ^ Eden 2008, pp. 99–104
  14. ^ Norris & Wagner 1999, p. 128
  15. Yenne 2002, p. 33
  16. ^ Eden 2008, p. 112
  17. ^ Norris & Wagner 1999, p. 126
  18. ^ Norris & Wagner 1999, p. 127
  19. ^ Eden 2008, p. 106
  20. Norris & Wagner 2001, p. 11
  21. Norris & Wagner 1996, pp. 9–14
  22. Norris & Wagner 1999, p. 129
  23. ^ Birtles 1998, pp. 13–16
  24. Lane, Polly (December 1, 1991). "Aerospace Company May Be Rethinking Commitment To The Puget Sound Area". Seattle Times. Retrieved October 15, 2009.
  25. ^ Norris & Wagner 1999, p. 132
  26. "Business Notes: Aircraft". Time. October 29, 1990. Archived from the original on November 18, 2007. Retrieved July 19, 2008.
  27. ^ Norris & Wagner 1996, p. 14
  28. Norris & Wagner 1996, p. 13
  29. Norris & Wagner 1996, p. 15
  30. Norris & Wagner 1996, p. 20
  31. "BA Gets New 777 Model". Seattle Post-Intelligencer. February 10, 1997. Archived from the original on November 5, 2012. Retrieved July 4, 2015.
  32. An Introduction to Mechanical Engineering. Cl-Engineering. p. 19. ISBN 978-1-111-57680-6. As an example, the Boeing 777 was the first commercial airliner developed through a paperless computer-aided design process.
  33. ^ Norris & Wagner 1999, p. 133
  34. Norris & Wagner 1999, pp. 133–134
  35. Abarbanel & McNeely 1996, p. 124 Note: IVT is still active at Boeing in 2010 with over 29,000 users.
  36. Norris & Wagner 1996, p. 21
  37. ^ Eden 2008, p. 108
  38. Hise, Phaedra (July 9, 2007). "The power behind Boeing's 787 Dreamliner". CNN. Retrieved October 15, 2009.
  39. ^ Richardson, Michael (February 23, 1994). "Demand for Airliners Is Expected to Soar: Asia's High-Flying Market". International Herald Tribune. Retrieved March 20, 2009.
  40. Sabbagh 1995, pp. 112–114
  41. ^ Norris & Wagner 1999, pp. 136–137
  42. ^ "A question of choice". Flight International. January 3, 2000. Archived from the original on April 14, 2009. Retrieved March 29, 2009.
  43. Sabbagh 1995, pp. 168–169
  44. Norris, Guy (March 31, 1993). "Boeing prepares for stretched 777 launch". Flight International. Retrieved May 8, 2011.
  45. Norris & Wagner 1996, p. 7
  46. Sabbagh 1995, pp. 256–259
  47. ^ Eden 2008, p. 107
  48. Birtles 1998, p. 25
  49. Andersen, Lars (August 16, 1993). "Boeing's 777 Will Be Tops When It Comes To ETOPS". Seattle Times. Retrieved March 20, 2009.
  50. ^ Norris & Wagner 1999, p. 144
  51. Birtles 1998, p. 40
  52. Birtles 1998, p. 20
  53. Birtles 1999, p. 34
  54. Birtles 1998, p. 69
  55. "First Boeing 777 delivery goes to United Airlines". Business Wire. May 15, 1995. Archived from the original on August 20, 2011. Retrieved July 4, 2015.
  56. Norris & Wagner 1999, p. 139
  57. Birtles 1998, p. 80
  58. 180-minute ETOPS approval was granted to the General Electric GE90 powered 777 on October 3, 1996, and to the Rolls-Royce Trent 800-powered 777 on October 10, 1996.
  59. ^ Eden 2004, p. 115.
  60. ^ Norris & Wagner 1999, p. 143
  61. Norris & Wagner 1999, p. 147
  62. Norris & Wagner 1999, pp. 146–147
  63. "Boeing Roars Ahead". BusinessWeek. November 6, 2005. Archived from the original on March 2, 2009. Retrieved December 1, 2008.
  64. ^ Norris & Wagner 1999, p. 148
  65. "777 Reliability Data" (PDF). Boeing. Archived from the original (PDF) on February 2, 2014. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  66. Trouble-plagued Dreamliner only 98% reliable, Boeing admits Boeing
  67. "777". boeing.com. Archived from the original on March 30, 2015. Retrieved April 1, 2015.
  68. Wyndham, David (October 2012). "Aircraft Reliability". AvBuyer. World Aviation Communication Ltd. Retrieved January 23, 2014.
  69. ^ Eden 2008, p. 113
  70. ^ Eden 2008, pp. 112–113
  71. ^ "The Boeing 777 Program Background". Boeing. Archived from the original on June 8, 2009. Retrieved June 6, 2009.
  72. ^ Haenggi, Michael. "777 Triple Seven Revolution". Boeing Widebodies. St. Paul, Minnesota: MBI, 2003. ISBN 0-7603-0842-X.
  73. ^ Norris & Wagner 1999, p. 151
  74. ^ Norris & Wagner 2001, p. 125
  75. ^ Norris & Wagner 1999, pp. 151–157
  76. ^ Norris & Wagner 1999, p. 165
  77. ^ Norris & Wagner 1999, pp. 165–167
  78. ^ Norris, Guy (May 15, 1996). "Boeing sets decision date for new versions of 777". Flight International. Archived from the original on April 14, 2009. Retrieved March 29, 2009.
  79. "Aero-Engines – Rolls-Royce Trent". Jane's Transport Business News. February 13, 2001. Archived from the original on March 25, 2008. Retrieved March 21, 2009. {{cite web}}: Italic or bold markup not allowed in: |publisher= (help)
  80. General Electric Biggest Jet Engine for B-777. History Channel. 2008. Event occurs at 3:00–3:10 min. Retrieved July 11, 2013.
  81. "Boeing launches stretch 777 jetliner". Deseret News. February 29, 2000. Retrieved October 28, 2009.
  82. Song, Kyung (October 5, 2000). "Air France orders 10 777s". Seattle Times. Retrieved September 15, 2009.
  83. Dinell, David (March 16, 2004). "Boeing's 777-300ER receives certification". Wichita Business Journal. Archived from the original on August 5, 2011. Retrieved March 20, 2009.
  84. ^ Jon Ostrower (August 7, 2008). "Green and versatile". Flight International.
  85. ^ Thomas, Geoffrey (June 13, 2008). "Boeing under pressure as demand rises for fuel-saver 777". The Australian. Retrieved June 20, 2008.
  86. Wallace, James (February 3, 2006). "777 distance champ is certified for service". Seattle Post-Intelligencer. Retrieved December 10, 2008.
  87. ^ Chaudhry, Muhammad Bashir (November 18, 2008). "Modernization of PIA fleet". Pakistan Dawn. Archived from the original on April 13, 2009. Retrieved February 12, 2008.
  88. ^ "777-300 Technical Characteristics". Boeing. Archived from the original on April 2, 2009. Retrieved March 20, 2009.
  89. Trimble, Stephen (May 23, 2008). "Boeing 777F makes its debut ahead of flight test phase". Flight International. Archived from the original on May 26, 2008. Retrieved June 6, 2008.
  90. ^ "Datafile: Boeing 777F". Flug Revue. 2006. Archived from the original on January 30, 2008. Retrieved March 20, 2009.
  91. ^ "Technical Characteristics -- Boeing 777-200LR and 777-300ER". Boeing. Retrieved February 8, 2015. {{cite web}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  92. Ionides, Nicholas (July 15, 2008). "Boeing 777F flies for the first time". Flight International. Archived from the original on April 14, 2009. Retrieved March 20, 2009.
  93. "European Aviation Safety Agency Validates FAA Certification of Boeing 777 Freighter". Reuters. February 6, 2009. Archived from the original on July 26, 2012. Retrieved July 1, 2011.
  94. ^ Ionides, Nicholas. "First 777 freighter delivered to Air France". Air Transport Intelligence via Flightglobal.com. Archived from the original on February 21, 2009. Retrieved February 20, 2009.
  95. "Boeing launches cargo version of 777". Associated Press. May 24, 2005. Retrieved March 20, 2009.
  96. ^ Song, Kyung (June 4, 2000). "Who builds a better widebody?". Seattle Times. Retrieved October 29, 2009.
  97. Ray, Susanna (April 21, 2009). "Boeing Earnings Buffeted by 777 Production Slump". Bloomberg. Archived from the original on June 22, 2013. Retrieved October 29, 2009.
  98. Gates, Dominic (November 16, 2004). "Freighter version of 777 jetliner in works". Seattle Times. Retrieved October 29, 2009.
  99. ^ "Airbus A350 XWB puts pressure on Boeing 777". flightglobal. November 26, 2007.
  100. Hepher, Tim (September 8, 2008). "Sizing up Boeing's plane portfolio". Reuters. Retrieved June 3, 2011.
  101. Ranson, Lori (December 20, 2010). "Boeing unveils another increase in Boeing 777 production". Air Transport Intelligence via Flightglobal.com. Archived from the original on December 23, 2010. Retrieved January 2, 2011.
  102. ^ "Boeing Begins Work on 1,000th 777". Boeing. November 7, 2011. Retrieved November 8, 2011.
  103. ^ "Emirates airline receives 1,000th Boeing 777". Gulf News. March 3, 2012. Retrieved March 3, 2012.
  104. "Flight Standardization Board Report" (PDF). Federal Aviation Administration. August 25, 2011. Retrieved November 8, 2011.
  105. Norris & Wagner 2009, pp. 32–35.
  106. ^ "Order trickle continues for in-production widebodies". Flight International. September 8, 2008. Archived from the original on November 7, 2010. Retrieved November 2, 2010.
  107. Ostrower, Jon (September 8, 2008). "Boeing looks to extend 777 wingspan for incremental improvement package". Flight International. Archived from the original on March 22, 2010. Retrieved March 17, 2010.
  108. Ostrower, Jon (June 21, 2011). "PARIS: Boeing mulls 777-9X". Air Transport Intelligence via Flightglobal.com. Archived from the original on June 24, 2011. Retrieved July 4, 2011.
  109. "Emirates may be launch customer for new Boeing 777". Seattle Post-Intelligencer, September 12, 2011. Retrieved September 14, 2011.
  110. Perrett, Bradley, Very Chinese, Aviation Week & Space Technology, February 16-March 1, 2015, pp.38-9
  111. Perry, Dominic (April 7, 2015), "Boeing thinks smarter to boost 777, 737 appeal", Flightglobal, Reed Business Information, retrieved April 8, 2015
  112. "United and 777-300ERs". Leeham News. January 20, 2015. Retrieved January 21, 2015.
  113. Norris, Guy. "Mind the gap". Aviation Week & Space Technology, February 16 - March 1, 2015, pp. 42-3.
  114. Norris, Guy. "Sharpened edge". Aviation Week & Space Technology, March 16–29, 2015, pp. 26-8.
  115. http://airwaysnews.com/blog/2016/01/27/777-production-rate/
  116. ^ "A special look at the future prospects of the Boeing 777". Flight International. March 2012. Archived from the original on March 12, 2012. Retrieved March 10, 2012.
  117. ^ Ostrower, John (March 7, 2012). "Boeing homes in on late-2012 launch for 777 successor". Flight International. Retrieved March 20, 2012.
  118. Ostrower, Jon (February 13, 2012). "Boeing studies ultra long-range 777-8LX concept". Air Transport Intelligence via Flightglobal.com. Retrieved February 13, 2012.
  119. Ostrower, John (March 7, 2012). "GE plans 10% fuel burn improvement for GE9X engine". Flight International. Retrieved March 20, 2012.
  120. ^ "Boeing's widebody dominance hinges on 777X success". Aspire Aviation. Retrieved November 20, 2013.
  121. "Boeing selects GE as sole engine partner on next 777 plane". Reuters. March 15, 2013. Retrieved March 19, 2013.
  122. Norris, Guy (May 1, 2013). "Boeing Board Gives Approval To Offer 777X". Aviation Week & Space Technology. Archived from the original on May 9, 2013. Retrieved July 1, 2013.
  123. ^ Norris, Guy (November 17, 2013). "Boeing Launches 777X in Dubai Order Boom". Aviation Week. Penton. Archived from the original on December 3, 2013. Retrieved November 17, 2013. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  124. Gubisch, Michael (October 2013). "Lufthansa makes widebody move". Flight International. Retrieved November 25, 2013.
  125. Gubisch, Michael (September 19, 2013). "Split Lufthansa widebody order includes firm 777X". Flight Global. Retrieved September 19, 2013.
  126. "Boeing Statement on Lufthansa Selection of Boeing 777X for Future Long-Haul Fleet". Boeing, September 19, 2013.
  127. "Boeing spreads 777X design work to Charleston, Moscow, defence sites". Flight Global. October 30, 2013. Retrieved October 31, 2013.
  128. ^ Wilhelm, Steve (November 13, 2013). "Boeing Launches 777X with Orders for 259 Jets Worth $95B". Puget Sound Business Journal. Seattle, Washington: American City Business Journals. Archived from the original on November 13, 2013. Retrieved November 13, 2013. The 777X launch customers providing a total launch order of 259 aircraft worth more than $95 billion. {{cite journal}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  129. "Boeing Launches 777X with Record-Breaking Orders and Commitments" (Press release). Boeing. November 17, 2013. Retrieved April 5, 2014.
  130. "Dubai Air Show: Boeing Leads Order Books Race". BBC News. BBC. November 17, 2013. Business. Retrieved November 17, 2013. Boeing said its 777 mini-jumbo sales represented 'the largest product launch in commercial jetliner history by dollar value'. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  131. "Modern, Quiet and Environmentally Efficient: Lufthansa Group Orders 59 Ultra-Modern Wide-Body Boeing 777-9X and Airbus A350-900 Aircraft". Lufthansa Group (Press release). Deutsche Lufthansa AG. September 19, 2013. Retrieved November 17, 2013. ... the Supervisory Board approved the purchase of 59 ultra-modern aircraft for the Group at its meeting yesterday. 34 Boeing 777-9Xs and 25 Airbus A350-900s will be added to the Lufthansa Group's wide-body fleet. {{cite press release}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  132. Trimble, Stephen (April 15, 2014). "How the 777 pushed Boeing forward". Flight International. Retrieved April 20, 2014.
  133. ^ North, David. "Finding Common Ground in Envelope Protection Systems". Aviation Week & Space Technology, August 28, 2008, pp. 66–68.
  134. Birtles 1998, p. 57
  135. Norris & Wagner 1996, p. 47
  136. ^ Sweetman, Bill (September 1, 2005). "The Short, Happy Life of the Prop-fan". Air & Space. Retrieved December 1, 2008.
  137. Corliss, Bryan (November 5, 2003). "New Boeing 777 Boasts Breakthrough Video System". Forbes. Retrieved May 5, 2009.
  138. ^ Norris, Guy (November 25, 2013). "Dubai Provides Runway For 777X Program Launch". Aviation Week & Space Technology. Archived from the original on November 25, 2013. Retrieved November 25, 2013.
  139. Ropelewski, Robert (June 1995). "Flying the Boeing 777.(Evaluation)". Interavia Business & Technology. Retrieved June 29, 2015 – via HighBeam. {{cite journal}}: Unknown parameter |subscription= ignored (|url-access= suggested) (help)
  140. Newhouse 2008, p. 106
  141. Norris & Wagner 1999, p. 130
  142. Morris, Doug (March 2012). "What determines the kind of aircraft that will be used for a particular route?". enRoute.
  143. "Type Acceptance Report – Boeing 777" (PDF). Civil Aviation Authority of New Zealand. Retrieved December 1, 2008.
  144. Norris & Wagner 1996, p. 35
  145. Norris & Wagner 1996, p. 92
  146. Eden 2008, p. 111
  147. Turner, Aimee (March 28, 2006). "ADP to revamp runway at Orly". Flight International. Archived from the original on April 14, 2009. Retrieved April 2, 2009.
  148. Birtles 1998, p. 66
  149. Birtles 1998, p. 60
  150. ^ Norris & Wagner 2001, pp. 32–33
  151. Wallace, James (November 26, 2008). "Continental plans Dreamliner seats to be roomy, with a view". Seattle Post-Intelligencer. Archived from the original on November 6, 2012. Retrieved July 1, 2011.
  152. "Lufthansa Technik turns out first customized VIP Boeing 777". Lufthansa Technik. December 22, 2000. Archived from the original on June 15, 2009. Retrieved October 25, 2008.
  153. Stover, Dawn (June 1994). "The newest way to fly". Popular Science: 78–79, 104. Retrieved March 10, 2011.
  154. ^ Wallace, James (February 4, 2003). "Boeing adds places for crews to snooze". Seattle Post-Intelligencer. Retrieved June 3, 2011.
  155. Norris & Wagner 1999, p. 122
  156. Norris & Wagner 1999, pp. 46, 112
  157. Kirby, Mark (July 7, 2011). "Boeing eyes 'common cabin experience' across platforms". Air Transport Intelligence via Flightglobal.com. Archived from the original on July 10, 2011. Retrieved July 8, 2011.
  158. Johnsson, Julie (May 1, 2014). "Boeing Maps Boost in Cabin Comfort for Next 777". Bloomberg. Retrieved May 1, 2014.
  159. Peter Pugh (2002). The Magic of a Name: The Rolls-Royce Story, Part 3: A Family of Engines. Icon Books Ltd. ISBN 9781848319981.
  160. ^ Birtles 1999, pp. 103, 105
  161. Norris & Wagner 2001, p. 102
  162. "About our operating aircraft". Japan Airlines. Archived from the original on November 25, 2009. Retrieved October 25, 2009.
  163. ^ "ICAO Document 8643." International Civil Aviation Organization. Retrieved: February 6, 2011.
  164. John, Danny (September 12, 2007). "Air NZ must ask shareholders". Sydney Morning Herald. Retrieved March 30, 2009.
  165. "Cathay Pacific puts its trust in Boeing". Asia Times Online. December 3, 2005. Retrieved March 30, 2009.
  166. "Air Canada – 777-300ER (77W)". Air Canada. Retrieved March 30, 2009.
  167. ^ "777-200/-200ER Technical Characteristics". Boeing. November 21, 2008. Archived from the original on June 27, 2009. Retrieved June 6, 2009.
  168. Crilly, Bob (January 10, 2015). "Jet stream blasts BA plane across Atlantic in record time". The Daily Telegraph. London. Retrieved January 12, 2015.
  169. Wallace, James (November 19, 2001). "Aerospace Notebook: Conner's best bet – Let it ride on the 777s but airlines aren't ready to commit to 200LR model". Seattle Post-Intelligencer. Archived from the original on November 5, 2012. Retrieved May 8, 2011. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  170. "Still Tops for ETOPS". Air Safety Week. April 14, 2003. Retrieved May 23, 2009.
  171. "Divert Details". Air Safety Week. March 24, 2003. Retrieved May 23, 2009.
  172. ^ "SIA's new long-haul LCC to start with 400-seat B777s, plans 16-aircraft fleet within four years". CAPA Centre for Aviation. September 1, 2011. Retrieved March 22, 2012.
  173. "Our Fleet". Singapore Airlines. 2012. Retrieved March 22, 2012.
  174. Wall, Robert (October 30, 2005). "Boeing's Interest Focuses on 747 Advanced, Not 787-10". Aviation Week & Space Technology. Retrieved March 20, 2009.
  175. ^ "Datafile: Boeing 777-200LR Worldiner". Flug Revue. 2006. Archived from the original on June 23, 2008. Retrieved March 20, 2009. {{cite web}}: |archive-date= / |archive-url= timestamp mismatch; May 17, 2008 suggested (help)
  176. Field, David (March 17, 2008). "Delta pushes Boeing to squeeze more range from 777-200LR". Flight International. Archived from the original on March 20, 2008. Retrieved December 2, 2008.
  177. "FAA Type Certificate Data Sheet T00001SE" (PDF). Federal Aviation Administration. Retrieved November 5, 2009.
  178. "Deliveries". Boeing. Retrieved September 8, 2009.
  179. Norris & Wagner 1999, pp. 151–152
  180. Birtles 1998, p. 67
  181. Norris & Wagner 1999, pp. 152–156
  182. "Datafile: Boeing 777-300". Flug Revue. 2006. Archived from the original on January 30, 2008. Retrieved March 20, 2009.
  183. "Datafile: Boeing 777-300ER". Flug Revue. 2006. Archived from the original on January 29, 2008. Retrieved March 20, 2009.
  184. "777-300ER characteristics". Boeing.
  185. ^ "Boeing revises "obsolete" performance assumptions". flightglobal.com. August 3, 2015. Retrieved August 5, 2015.
  186. Guy Norris (January 28, 2003). "Long Ranger". Flight International.
  187. Scott Hamilton (February 3, 2014). "Updating the A380: the prospect of a neo version and what's involved". Leeham news.
  188. Paul Eisenstein (July 2004). "Biggest Jet Engine". Popular Mechanics.
  189. Geoffrey Thomas (December 2, 2005). "Boeing nose ahead in Qantas order race". The Australian.
  190. Ben Kingsley-Jones; Guy Norris (November 29, 2005). "Enhanced A340 to take on 777". Flight International.
  191. "New Boeing 777-300ER Joins Air France Fleet" (PDF). Air France. May 13, 2004. Retrieved August 25, 2013.
  192. "777-300ER fleet report: orders have peaked but Swiss, United and Kuwait new operators in 2016". CAPA centre for aviation. February 25, 2016.
  193. Norris, Guy (May 16, 2006). "Cargo Kings: new Boeing 777F and 747-8F programmes". Flight International. Archived from the original on April 14, 2009. Retrieved March 29, 2009.
  194. ^ "Technical Characteristics -- Boeing 777 Freighter". Boeing. Retrieved February 8, 2015. {{cite web}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  195. Wallace, James (November 15, 2004). "Boeing seeks cargo 777 orders". Seattle Post-Intelligencer. Retrieved December 3, 2008.
  196. "Air France to buy Boeing 777 freighters". USA Today. Associated Press. March 25, 2005. Retrieved October 19, 2010.
  197. Sobie, Brendan (September 23, 2008). "Boeing reveals cargo conversion development studies for 777". Air Transport Intelligence via Flightglobal.com. Retrieved October 19, 2010.
  198. Sobie, Brendan (October 19, 2010). "Boeing expects to secure 777BCF launch customer in early 2011". Air Transport Intelligence via Flightglobal.com. Retrieved October 19, 2010.
  199. ^ "Boeing Business Jets Delivers 777-200LR to Aviation Link Company". Boeing. November 10, 2010. Retrieved August 14, 2014.
  200. ^ Waldron, Greg (June 11, 2014). "Boeing receives order for 777-300ER BBJ". Flight International. Retrieved August 14, 2014.
  201. Sarsfield, Kate (March 13, 2015), "Jet Aviation secures completion contract for two BBJ 777-300ERs", Flightglobal, Reed Business Information, retrieved March 14, 2015 {{citation}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  202. Sachdev, Ameet (September 27, 2006). "Boeing adds 777 to tanker mix". Chicago Tribune. Retrieved May 8, 2011.
  203. Norris, Guy (October 3, 2006). "US Air Force tanker RFP reveals KC-777 offer". Flight International. Archived from the original on June 18, 2009. Retrieved April 21, 2009.
  204. "Ready to fill 'er up" (PDF). Boeing. November 2006. Retrieved April 21, 2009.
  205. Vandruff, Ken (April 11, 2007). "Boeing submits KC-767 tanker proposal". Wichita Business Journal. Archived from the original on August 26, 2011. Retrieved March 20, 2009.
  206. Warwick, Graham (November 8, 2006). "USAF lays out X, Y and Z of tanker replacement strategy in three-tranche process to replace ageing KC-135s". Flight International. Retrieved August 14, 2014.
  207. ^ "Japan chooses Boeing 777-300ER as government's official jet". Japan Times. Jiji. August 12, 2014. Retrieved August 13, 2014.
  208. "Boeing 777 de Papa Romeo". Convention de la Diaspora Gabonaise. March 17, 2014. Archived from the original on April 3, 2014. Retrieved August 14, 2014.
  209. "Turkmen Triple". Airliner World. May 2014, p. 13.
  210. Hack, Christopher (September 3, 2000). "The battle for Lebanon's premiership". BBC. Retrieved August 14, 2014.
  211. ^ Wilhelm, Steve. "Will U.S. copy Japan and switch to 777 for Air Force One?". Puget Sound Business Journal. Archived from the original on August 14, 2014. Retrieved September 14, 2014.
  212. "AF Identifies Boeing 747-8 platform for next Air Force One". United States Air Force. United States Air Force. January 28, 2015. Retrieved January 28, 2015.
  213. Gale, Ivan (July 19, 2010). "Emirates $9bn deal beats expectations". The National. Retrieved March 3, 2012.
  214. ^ "Safety Recommendation: In reply refer to: A-09-17 (Urgent) and −18". Mayday, Discovery Channel. March 11, 2009.
  215. "Boeing 777 occurrences". Aviation Safety Network. October 17, 2015. Retrieved October 17, 2015.
  216. "Boeing 777 hull losses". Aviation Safety Network. October 17, 2015. Retrieved October 17, 2015.
  217. "Boeing 777 Accident Statistics". Aviation Safety Network. October 17, 2015. Retrieved October 17, 2015.
  218. ^ "British Airways Flight 2019 ground fire". Aviation Safety Network. Retrieved November 21, 2008.
  219. "DEN01FA157 entry". National Transportation Safety Board. February 24, 2005. Retrieved January 2, 2011.
  220. British Airways (February 1, 2008). "Interim Management Statement". Regulatory News Service. Retrieved November 21, 2008.
  221. "Report on the accident to Boeing 777-236ER, G-YMMM, at London Heathrow Airport on 17 January 2008" (PDF). Air Accidents Investigation Branch. February 9, 2010. Retrieved February 9, 2010.
  222. "'High risk' of plane fault repeat". BBC News. March 13, 2009. Retrieved March 20, 2009.
  223. Kaminski-Morrow, David (February 29, 2008). "American investigates as 777 engine fails to respond to throttle". Flight International. Archived from the original on March 4, 2008. Retrieved March 20, 2009.
  224. "NTSB Investigates B777 Uncommanded Engine Rollback". Air Safety Week. December 22, 2008. Retrieved April 2, 2009.
  225. Woodman, Peter (February 9, 2010). "Ice 'probable cause' of Heathrow crash-landing". The Independent. UK. Retrieved December 11, 2011.
  226. ^ "EgyptAir Flight 667 ground fire". Aviation Safety Network. Retrieved January 2, 2012.
  227. ^ "Recent Incidents / Accidents Worldwide". Jet Airliner Crash Data Evaluation Centre. July 2011. Retrieved January 2, 2012.
  228. "One Asiana victim killed by a vehicle, not plane crash - coroner". Reuters News Agency. July 20, 2013. Retrieved August 8, 2013.
  229. "3rd fatality in Asiana flight crash". CBS News. July 12, 2013. Retrieved July 14, 2013.
  230. "Asiana 777-200ER crashes at San Francisco airport". Flight International. July 6, 2013. Retrieved July 6, 2013.
  231. "Pilot Error Eyed in San Francisco Plane Crash". Wall Street Journal. July 8, 2013. Retrieved July 8, 2013. National Transportation Safety Board Chairman Deborah Hersman's comments indicated investigators were focused primarily on why the cockpit crew allowed speed to decay to such an extent ...
  232. Withnall, Adam (June 25, 2014). "Asiana Airlines flight 214 crash caused by Boeing planes being 'overly complicated'". The Independent. Retrieved July 17, 2014.
  233. "Night search for missing 777 to test Malaysia and Vietnam". Flight Global.
  234. "Friday, March 14, 12:00 AM MYT +0800 Malaysia Airlines MH370 Flight Incident - 18th Media Statement". Malaysia Airlines. March 14, 2014. Archived from the original on March 8, 2014. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  235. Reed Business Information Limited. "'Equal importance' given to both corridors in MH370 search". flightglobal.com. Retrieved April 1, 2015. {{cite web}}: |author= has generic name (help)
  236. "Flight MH370 'crashed in south Indian Ocean' - Malaysia PM". BBC News. Retrieved April 1, 2015.
  237. "Malaysia declares MH370's disappearance an accident". The Star. Retrieved January 29, 2015.
  238. "MH370: Full statement by DCA". The Star. January 29, 2015.
  239. "MH370: What's next in the investigation? - CNN.com". CNN. Retrieved August 6, 2015.
  240. C.J. Chivers (July 21, 2014). "Jet Wreckage Bears Signs of Impact by Supersonic Missile, Analysis Shows". New York Times.
  241. Peter Baker (July 19, 2014). "With Jet Strike, War in Ukraine Is Felt Globally". New York Times.
  242. Malaysia Airlines flight MH17 shot down in Ukraine near Russia
  243. Catherine E. Shoichet and Ashley Fantz (July 17, 2014). "U.S. official: Missile hit Malaysia Airlines plane". CNN. Retrieved April 1, 2015.
  244. "Flight MH17 downed by Russian-built missile, Dutch investigators say". The Guardian, October 13, 2015.
  245. "BA Jet Fire: Multiple Breaches Of Engine Case". Sky News. September 10, 2015. Retrieved September 10, 2015.
  246. "British Airways Boeing 777 catches fire at Las Vegas airport and forces evacuation". The Independent. September 9, 2015.
  247. "British Airways plane catches fire in Las Vegas". The BBC. September 9, 2015.
  248. Trimble, Stephen (September 9, 2015). "Fire erupts after BA 777 aborts takeoff". flightglobal.com. Flightglobal's online database lists this aircraft as a 777-200ER powered by GE Aviation GE90-85B engines...
  249. 19 injured as Boeing 777 engine catches fire in Tokyo, plane evacuated KOMO
  250. Hundreds Evacuate Korean Air Jet After Engine Catches Fire ABC News
  251. Korean Air evacuates plane at Japan's Haneda Airport after engine fire Reuters
  252. Park, Kyunghee (June 27, 2016). "Engine catches fire on Singapore Air flight to Milan". Financial Review. Bloomberg. Retrieved June 27, 2016.
  253. Waldron, Greg (June 27, 2016). "Fire damage apparent on SIA 777 wing". Flight Global. Retrieved June 27, 2016.
  254. ^ "Emirates flight from Trivandrum crash-lands in Dubai, passengers safe". Deccan Chronicle. August 3, 2016. Retrieved August 3, 2016.
  255. ^ "777-200ER Characteristics". Boeing. Retrieved July 10, 2016.
  256. Gillie, John. "Boeing will expand seating on its new 777-9 by 20 seats". The News Tribune. Retrieved January 5, 2015.
  257. Norris, Guy (June 9, 2014). "777X Configuration Changes Revealed". Aviation Week. Retrieved June 10, 2014.
  258. "777X Airport Compatibility" (PDF). July 2013. Retrieved November 18, 2013.
  259. Garcia, Marisa. "Boeing's New 777X Designs Intensify the Race for Space on Airlines". Skift.com. Retrieved July 8, 2014.
  260. ^ With 313 passengers and baggage
  261. ^ With 396 passengers and baggage
  262. "Boeing 777 Technical Information". Boeing. Archived from the original on March 22, 2015. Retrieved February 8, 2015. {{cite web}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  263. 777-200/300 Airplane Characteristics for Airport Planning (PDF) (Technical report). Boeing. May 2011. D6-58329C. Retrieved March 26, 2016.
  264. 777-200LR/-300ER/-Freighter Airplane Characteristics for Airport Planning (PDF) (Technical report). Boeing. May 2011. D6-58329-2D. Retrieved March 26, 2015.
  265. 777X Airport Compatibility Brochure (revision 3) (PDF) (Technical report). Boeing. May 2015. Retrieved March 26, 2015.
  266. "Boeing To Make Up Lost Grounds On All Fronts". Aspire Aviation. Retrieved June 20, 2013.
  267. "Boeing 777X To Spark Mini-Jumbo War". Aspire Aviation. Retrieved June 20, 2013.
  268. "Airbus, Boeing in game of thrones for widebody dominance". Aspire Aviation. Retrieved October 16, 2014.
  269. "Stretched potential for Boeing 777". Flight Global. 2013. Archived from the original on October 20, 2013. Retrieved October 16, 2013. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  270. Frawley 2003, pp. 61–62
  271. "Trent 800 Technical data (archive)". Rolls-Royce. 2007. Archived from the original on October 26, 2007. Retrieved May 23, 2009.

Bibliography

  • Abarbanel, Robert; McNeely, William (1996). FlyThru the Boeing 777. New York: ACM SIGGRAPH. ISBN 0-89791-784-7. {{cite book}}: Invalid |ref=harv (help)
  • Birtles, Philip (1998). Boeing 777, Jetliner for a New Century. St. Paul, Minnesota: Motorbooks International. ISBN 0-7603-0581-1. {{cite book}}: Invalid |ref=harv (help)
  • Birtles, Philip (1999). Modern Civil Aircraft: 6, Boeing 757/767/777 (Third ed.). London: Ian Allen Publishing. ISBN 0-7110-2665-3. {{cite book}}: Invalid |ref=harv (help)
  • Eden, Paul, ed. (2008). Civil Aircraft Today: The World's Most Successful Commercial Aircraft. London: Amber Books Ltd. ISBN 1-84509-324-0. {{cite book}}: Invalid |ref=harv (help)
  • Frawley, Gerard (2003). The International Directory of Civil Aircraft 2003/2004. London: Aerospace Publications. ISBN 1-875671-58-7. {{cite book}}: Invalid |ref=harv (help)
  • Glenday, Craig (2007). Guinness World Records. London/New York: HiT Entertainment. ISBN 978-0-9735514-4-0. {{cite book}}: Invalid |ref=harv (help)
  • Newhouse, John (2008). Boeing versus Airbus: The Inside Story of the Greatest International Competition in Business. London: Vintage. ISBN 1-4000-7872-5. {{cite book}}: Invalid |ref=harv (help)
  • Norris, Guy; Wagner, Mark (1996). Boeing 777. St. Paul, Minnesota: Motorbooks International. ISBN 0-7603-0091-7. {{cite book}}: Invalid |ref=harv (help)
  • Norris, Guy; Wagner, Mark (2001). Boeing 777: The Technological Marvel. Minneapolis, Minnesota: Zenith Imprint. ISBN 0-7603-0890-X. {{cite book}}: Invalid |ref=harv (help)
  • Norris, Guy; Wagner, Mark (2009). Boeing 787 Dreamliner. Osceola, Wisconsin: Zenith Press. ISBN 978-0-7603-2815-6. {{cite book}}: Invalid |ref=harv (help)
  • Norris, Guy; Wagner, Mark (1999). Modern Boeing Jetliners. Minneapolis, Minnesota: Zenith Imprint. ISBN 0-7603-0717-2. {{cite book}}: Invalid |ref=harv (help)
  • Sabbagh, Karl (1995). 21st Century Jet: The Making of the Boeing 777. New York: Scribner. ISBN 0-333-59803-2. {{cite book}}: Invalid |ref=harv (help)
  • Wells, Alexander T.; Rodrigues, Clarence C. (2004). Commercial Aviation Safety. New York: McGraw-Hill Professional. ISBN 0-07-141742-7. {{cite book}}: Invalid |ref=harv (help)
  • Yenne, Bill (2002). Inside Boeing: Building the 777. Minneapolis, Minnesota: Zenith Press. ISBN 0-7603-1251-6. {{cite book}}: Invalid |ref=harv (help)

External links

Boeing airliners and civil aircraft
Airliners
Piston-engined
Jet-engined
In development
Proposed
Not developed
Civil trainers/
utility aircraft
Boeing 7x7 aircraft production timeline, 1955–present
1950s1960s1970s1980s1990s2000s2010s2020s
56789012345678901234567890123456789012345678901234567890123456789012345
Boeing 717 (MD-95)
Boeing 737 OriginalBoeing 737 ClassicBoeing 737 NG737 MAX
Boeing 727
Boeing 720Boeing 757
Boeing 707Boeing 767
Boeing 787
Boeing 777777X
Boeing 747 (Boeing 747SP)Boeing 747-400747-8
  Narrow body   Wide body
Overlapping production times like between the 747-400 and the 747-8 have been decided in favor of newer models
Boeing aircraft model numbers
Aircraft
Turbine engines
Missiles
Vessels
Other

Categories: