Misplaced Pages

Autocorrelation matrix

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 93.140.121.201 (talk) at 17:40, 18 May 2019 (I don't think this is true in general.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 17:40, 18 May 2019 by 93.140.121.201 (talk) (I don't think this is true in general.)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Part of a series on Statistics
Correlation and covariance
For random vectors
For stochastic processes
For deterministic signals
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (July 2018) (Learn how and when to remove this message)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (July 2018) (Learn how and when to remove this message)

The auto-correlation matrix (also called second moment) of a random vector X = ( X 1 , , X n ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\rm {T}}} is an n × n {\displaystyle n\times n} matrix containing as elements the autocorrelations of all pairs of elements of the random vector X {\displaystyle \mathbf {X} } . The autocorrelation matrix is used in various digital signal processing algorithms.

Definition

For a random vector X = ( X 1 , , X n ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\rm {T}}} containing random elements whose expected value and variance exist, the auto-correlation matrix is defined by

R X X   E [ X X T ] {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {X} }\triangleq \ \operatorname {E} } Eq.1

where T {\displaystyle {}^{\rm {T}}} denotes transposition and has dimensions n × n {\displaystyle n\times n} .

Written component-wise:

R X X = [ E [ X 1 X 1 ] E [ X 1 X 2 ] E [ X 1 X n ] E [ X 2 X 1 ] E [ X 2 X 2 ] E [ X 2 X n ] E [ X n X 1 ] E [ X n X 2 ] E [ X n X n ] ] {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {X} }={\begin{bmatrix}\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\vdots &\vdots &\ddots &\vdots \\\\\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\end{bmatrix}}}

If Z {\displaystyle \mathbf {Z} } is a complex random vector, the autocorrelation matrix is instead defined by

R Z Z   E [ Z Z H ] {\displaystyle \operatorname {R} _{\mathbf {Z} \mathbf {Z} }\triangleq \ \operatorname {E} } .

Here H {\displaystyle {}^{\rm {H}}} denotes Hermitian transposition.

Example

For example, if X = ( X 1 , X 2 , X 3 ) T {\displaystyle \mathbf {X} =\left(X_{1},X_{2},X_{3}\right)^{\rm {T}}} is a random vectors, then R X X {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {X} }} is a 3 × 3 {\displaystyle 3\times 3} matrix whose ( i , j ) {\displaystyle (i,j)} -th entry is E [ X i X j ] {\displaystyle \operatorname {E} } .

Properties

  • The autocorrelation matrix is a Hermitian matrix for complex random vectors and a symmetric matrix for real random vectors.
  • The autocorrelation matrix is a positive semidefinite matrix, i.e. a T R X X a 0 for all  a R n {\displaystyle \mathbf {a} ^{\mathrm {T} }\operatorname {R} _{\mathbf {X} \mathbf {X} }\mathbf {a} \geq 0\quad {\text{for all }}\mathbf {a} \in \mathbb {R} ^{n}} for a real random vector respectively a H R Z Z a 0 for all  a C n {\displaystyle \mathbf {a} ^{\mathrm {H} }\operatorname {R} _{\mathbf {Z} \mathbf {Z} }\mathbf {a} \geq 0\quad {\text{for all }}\mathbf {a} \in \mathbb {C} ^{n}} in case of a complex random vector.
  • All eigenvalues of the autocorrelation matrix are real and positive.
  • The auto-covariance matrix is related to the autocorrelation matrix as follows:
K X X = E [ ( X E [ X ] ) ( X E [ X ] ) T ] = R X X E [ X ] E [ X ] T {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {X} }=\operatorname {E} )(\mathbf {X} -\operatorname {E} )^{\rm {T}}]=\operatorname {R} _{\mathbf {X} \mathbf {X} }-\operatorname {E} \operatorname {E} ^{\rm {T}}}
Respectively for complex random vectors:
K Z Z = E [ ( Z E [ Z ] ) ( Z E [ Z ] ) H ] = R Z Z E [ Z ] E [ Z ] H {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {Z} }=\operatorname {E} )(\mathbf {Z} -\operatorname {E} )^{\rm {H}}]=\operatorname {R} _{\mathbf {Z} \mathbf {Z} }-\operatorname {E} \operatorname {E} ^{\rm {H}}}

References

  1. ^ Papoulis, Athanasius, Probability, Random variables and Stochastic processes, McGraw-Hill, 1991
  2. Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press. ISBN 978-0-521-86470-1.
Categories: