This is an old revision of this page, as edited by Mglg (talk | contribs) at 21:23, 30 November 2006 (Kg->kg (my typo)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 21:23, 30 November 2006 by Mglg (talk | contribs) (Kg->kg (my typo))(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Template:Elementbox header Template:Elementbox series Template:Elementbox groupperiodblock Template:Elementbox appearance Template:Elementbox atomicmass gpm Template:Elementbox econfig Template:Elementbox epershell Template:Elementbox section physicalprop Template:Elementbox phase Template:Elementbox density gpcm3nrt Template:Elementbox density gpcm3nrt Template:Elementbox meltingpoint Template:Elementbox boilingpoint Template:Elementbox heatfusion kjpmol Template:Elementbox heatvaporiz kjpmol Template:Elementbox heatcapacity jpmolkat25 Template:Elementbox vaporpressure katpa Template:Elementbox section atomicprop Template:Elementbox crystalstruct Template:Elementbox oxistates Template:Elementbox electroneg pauling Template:Elementbox ionizationenergies1 Template:Elementbox atomicradius pm Template:Elementbox atomicradiuscalc pm Template:Elementbox section miscellaneous Template:Elementbox magnetic Template:Elementbox eresist ohmmat0 Template:Elementbox thermalcond wpmkat300k Template:Elementbox thermalexpansion umpmkat25 Template:Elementbox cas number Template:Elementbox isotopes begin |- ! rowspan="2" style="text-align:right; vertical-align:middle;" | Po | rowspan="2" style="text-align:center; vertical-align:middle;" | syn | rowspan="2" style="text-align:right; vertical-align:middle;" | 2.898 y | α | style="text-align:right;" | Pb |- | ε, β | style="text-align:right;" | Bi |- ! rowspan="2" style="text-align:right; vertical-align:middle;" | Po | rowspan="2" style="text-align:center; vertical-align:middle;" | syn | rowspan="2" style="text-align:right; vertical-align:middle;" | 103 y | α | style="text-align:right;" | Pb |- | ε, β | style="text-align:right;" | Bi |- ! style="text-align:right;" | Po | style="text-align:center;" | syn | style="text-align:right;" | 138.376 d | α | style="text-align:right;" | Pb Template:Elementbox isotopes end Template:Elementbox footer
Polonium (IPA: /pə(ʊ)ˈləʊniəm/) is a chemical element in the periodic table that has the symbol Po and atomic number 84. A rare radioactive metalloid, polonium is chemically similar to tellurium and bismuth and occurs in uranium ores. Polonium has been studied for possible use in heating spacecraft. It exists as a number of isotopes.
Applications
When it is mixed or alloyed with beryllium, polonium can be a neutron source: beryllium releases a neutron upon absorption of an alpha particle that is supplied by Po. It has been used in this capacity as a neutron trigger for nuclear weapons. Other uses include:
- Devices that eliminate static charges in textile mills and other places. However, beta sources are more commonly used and are less dangerous. Another alternative is to use a high voltage direct current power supply to ionize air positively or negatively.
- Brushes that remove accumulated dust from photographic films. The polonium used in these brushes is sealed and controlled thus minimizing radiation hazards.
- As Po, a lightweight heat source to power thermoelectric cells.
- Radioactive poison .
History
Also called "Radium F", polonium was discovered by Marie Curie and her husband Pierre Curie in 1898 and was later named after Marie's native land of Poland (Latin: Polonia). Poland at the time was under Russian, Prussian and Austrian domination, and not recognized as an independent country. It was Marie's hope that naming the element after her native land would add notoriety to its plight. Polonium may be the first element named to highlight a political controversy.
This element was the first one discovered by the Curies while they were investigating the cause of pitchblende radioactivity. The pitchblende, after removal of uranium and radium, was more radioactive than both radium and uranium put together. This spurred them on to find the element. The electroscope showed it separating with bismuth.
Occurrence
A very rare element in nature, polonium is found in uranium ores at about 100 micrograms per metric ton (1:10). Its natural abundance is approximately 0.2% of the abundance of radium. Polonium has been found in tobacco smoke from tobacco leaves grown with phosphate fertilizers.
Synthesis by (n,g) reaction
In 1934 an experiment showed that when natural Bi is bombarded with neutrons, Bi, which is the parent of polonium, was created. Polonium may now be made in milligram amounts in this procedure which uses high neutron fluxes found in nuclear reactors. Only about 100 grams is produced each year, making polonium exceedingly rare.
Synthesis by (p,n) and (p,2n) reactions
It has been found that by proton bombardment of bismuth using a cyclotron that the longer lived isotopes of polonium can be formed. Other more proton rich isotopes can be formed by the irradation of platinum with carbon nuclei.
Isotopes
Polonium has 25 known isotopes, all of which are radioactive. They have atomic masses that range from 194 u to 218 u. Po is the most widely available. Po (half-life 103 years) and Po (half-life 2.9 years) can be made through the alpha, proton, or deuteron bombardment of lead or bismuth in a cyclotron. However these isotopes are expensive to produce.
All elements containing 84 or more protons are radioactive. Alpha decay is a common form of decay for these nuclei. The most stable isotopes with more than 84 protons are thorium-232 and uranium-238; which form an "island of stability" which renders them stable enough to be found in large quantities in nature, but heavier nuclei are more and more affected by spontaneous fission.
Po
Polonium-210 is an alpha emitter that has a half-life of 138.376 days. A milligram of Po emits as many alpha particles as 5 grams of radium. A great deal of energy is released by its decay with half a gram quickly reaching a temperature above 750 K. A few curies (1 curie equals 37 gigabecquerels) of Po emit a blue glow which is caused by excitation of surrounding air. A single gram of Po generates 140 watts of power. Because it emits many alpha particles, which are stopped within a very short distance in dense media and release their energy, Po has been used as a lightweight heat source to power thermoelectric cells in artificial satellites. A Po heat source was also used in each of the Lunokhod rovers deployed on the surface of the Moon, to keep their internal components warm during the lunar nights. Some anti-static brushes contain up to 500 microcuries of Po as a source of charged particles for neutralizing static electricity in materials like photographic film. The majority of the time Po decays only by emission of an alpha particle, not by emission of an alpha particle and a gamma ray. About one in a 100000 decays results in the emission of a gamma ray, this low gamma ray production rate makes it more difficult to find and identify this isotope. Rather than gamma ray spectroscopy, alpha spectroscopy will be the best method of measuring this isotope.
Chemical characteristics
Polonium dissolves readily in dilute acids, but is only slightly soluble in alkalis. It is closely related chemically to bismuth and tellurium. Po (in common with ) has the ability to become airborne with ease: if a sample is heated in air to 328 K (55°C, 131°F), 50% of it is vaporized in 45 hours, even though the melting point of polonium is 527 K (254°C, 489°F) and its boiling point is 1235 K (962°C, 1763°F). More than one hypothesis exists for how polonium does this; one suggestion is that small clusters of polonium atoms are spalled off by the alpha decay.
It has been reported that microbes can methylate polonium by the action of methylcobalamin.
Solid state form
The alpha form of solid polonium is cubic with a distance of 3.352 Å between atoms. It is a simple cubic solid which is not interpenetrated.
The beta form of polonium is hexagonal; it has been reported in the chemical literature, along with the alpha form, several times.
Two papers report X-ray diffraction experiments on polonium metal. The first report of the crystal structure of polonium was done using electron diffraction.
Tests
Gamma counting
By means of radiometric methods such as gamma spectroscopy (or a method using a chemical separation followed by an activity measurement with a non-energy-dispersive counter), it is possible to measure the concentrations of radioisotopes and to distinguish one from another. In practice, background noise would be present and depending on the detector, the line width would be larger which would make it harder to identify and measure the isotope. In biological/medical work it is common to use the natural present in all tissues/body fluids as a check of the equipment and as an internal standard.
Alpha counting
The best way to test for (and measure) many alpha emitters is to use alpha spectroscopy is it is common to place a drop of the test solution on a metal disk which is then dried out to give a uniform coating on the disk. This is then used as the test sample. If the thickness of the layer formed on the disk is too thick then the lines of the spectrum are broadened, this is because some of the energy of the alpha particles is lost during their movement through the layer of active material. An alternative method is to use internal liquid scintillation where the sample is mixed with a scintillation cocktail. When the light emitted is then counted, some machines will record the amount of light energy per radioactive decay event. Due to the imperfections of the liquid scintillation method (such as a failure for all the photons to be detected, cloudy or coloured samples can be difficult to count) and the fact that random quenching can reduce the number of photons generated per radioactive decay it is possible to get a broadening of the alpha spectra obtained through liquid scintillation. It is likely that these liquid scintillation spectra will be subject to a Gaussian broadening rather than the distortion exhibited when the layer of a active material on a disk is too thick.
A third energy dispersive method for counting alpha particles is to use a semiconductor detector.
From left to right the peaks are due to Po, Po, Pu and Am. The fact that isotopes such as Pu and Am have more than one alpha line indicates that the nucleus has the ability to be in different discrete energy levels (like a molecule can).
Toxicity
Polonium is a highly radioactive and toxic element and is very difficult to handle. Even in milligram or microgram amounts, handling Po is extremely dangerous, requiring specialized equipment and strict handling procedures. Alpha particles emitted by polonium will damage organic tissue easily if polonium is ingested, inhaled, or absorbed (though they do not penetrate the epidermis and hence are not hazardous if the polonium is outside the body).
The fatal dose (LD50, the dose that leads to 50% risk of death) for acute radiation exposure is generally about 4 Sv . One Bq of Po (i.e., an amount that produces one decay per second) causes a radiation dose of 0.51 µSv if ingested Po, and 2.5 µSv if inhaled . Since Po radiates 166 TBq per gram, a fatal 4 Sv dose can be caused by ingesting 8 MBq (200 microcurie), about 50 nanogram, or inhaling 1.6 MBq (40 microcurie), about 10 ng. One gram of Po could thus in theory poison 100 millon people. In addition to the acute effects, short-term radiation exposure carries a long-term risk of death from cancer of approximately 8% per Sv .
In rats a dose of 1.45 MBq/kg (8.7 ng/kg) of Po tends to cause death in about 30 days. By this measure, Po is 400,000 times more toxic than hydrogen cyanide .
The maximum allowable body burden for ingested polonium is only 1,100 Bq (0.03 microcurie), which is equivalent to a particle weighing only 6.8 picograms. The maximum permissible concentration for airborne soluble polonium compounds is about 7,500 Bq/m (2 × 10 µCi/cm). The biological half-life of polonium in humans is 30 to 50 days.
Notably the death in 2006 of Alexander Litvinenko has been announced as probably due to Po poisoning.
See also
- Isotopes of polonium
- The entry for polonium at fictional applications of real materials
References
- Curie P., Curie M. (1898). Comptes Rendus. 126: 1101.
- Pfützner M. (1999). "Borders of the Nuclear World --- 100 Years After Discovery of Polonium". Acta Physica Polonica B. 30: 1197.
{{cite journal}}
: Text "issue 5" ignored (help) - Adloff J. P. (681–688). "The centennial of the 1903 Nobel Prize for physics". Radichimica Acta. 91: 2003. doi:10.1524/ract.91.12.681.23428.
{{cite journal}}
: Text "issue 12" ignored (help)CS1 maint: date format (link) - Kabzinska K. (1998). "Chemical and Polish aspects of polonium and radium discovery". Przemysl Chemiczy. 77: 104–107.
{{cite journal}}
: Text "issue 3" ignored (help) - Kilthau, Gustave F. "Cancer risk in relation to radioactivity in tobacco". Radiologic Technology. 67: 217–222.
{{cite journal}}
: Unknown parameter|pim=
ignored (help) - Alpha Radioactivity (210 Polonium) and Tobacco Smoke
- http://www.rsc.org/chemistryworld/News/2006/November/27110601.asp RSC Chemistry World Q&A
- Atterling, H., Forsling, W. (1959). "Light Polonium Isotopes from Carbon Ion Bombardments of Platinum". Arkiv for Fysik. 15 (1): 81–88.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Polonium, Argonne National Laboratory
- http://www.amstat.com/solutions/staticmaster.html
- Bogdan Wąs, Ryszard Misiak, Mirosław Bartyzel, Barbara Petelenz (2006). "Thermochromatographic Separation of ,Po from a Bismuth Target Bombardet with Protons" (PDF). Nukleonica. 51 (Suppl. 2): s3 – s5.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) -
Momoshima N., Song L.X., Osaki S.,Maeda Y., (2001). "Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin". Environ Sci Technol. 35 (15): 2956–2960. doi:10.1021/es001730+ S0013-936X(00)01730-2.
{{cite journal}}
: Check|doi=
value (help); Cite has empty unknown parameter:|1=
(help)CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) -
Momoshima N., Song L.X., Osaki S.,Maeda Y., (2002). "Biologically induced Po emission from fresh water". J Environ Radioact. 63 (2): 187–197. doi:10.1016/S0265-931X(02)00028-0.
{{cite journal}}
: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - R.J. Desando and R.C Lange, Journal of Inorganic and Nuclear Chemistry, 1966, 28, 1837-1846.
- W.H Beamer and C.R. Maxwell, Journal of Chemical Physics, 1946, 14, 569-569.
- M.A. Rollier, S.B. Hendricks and L.R. Maxwell, Journal of Chemical Physics, 1936, 4, 648-652.
- ^ Nuclide Safety Data Sheet: Polonium–210
- Rencováa J., Svoboda V., Holuša R., Volf V., Jones M. M., Singh P. K. (1997). "Reduction of subacute lethal radiotoxicity of polonium-210 in rats by chelating agents". International Journal of Radiation Biology. 72 (3): 247–249. doi:10.1080/095530097143338.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Effective half-life of polonium in the human
- "The mystery of Litvinenko's death". BBC News. 24 November 2006.
External links
References and External links verified 2006-11-25 unless noted.
- WebElements.com – Polonium
- History of Polonium
- Los Alamos National Laboratory – Polonium
- NLM Hazardous Substances Databank – Polonium, Radioactive