Misplaced Pages

Zitterbewegung

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by XOR'easter (talk | contribs) at 00:26, 28 August 2019 (Experimental simulation: +1 ref). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 00:26, 28 August 2019 by XOR'easter (talk | contribs) (Experimental simulation: +1 ref)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Zitterbewegung ("trembling motion" in German) is a predicted rapid oscillatory motion of elementary particles that obey relativistic wave equations. The existence of such motion was first proposed by Erwin Schrödinger in 1930 as a result of his analysis of the wave packet solutions of the Dirac equation for relativistic electrons in free space, in which an interference between positive and negative energy states produces what appears to be a fluctuation (up to the speed of light) of the position of an electron around the median, with an angular frequency of ⁠2mc/⁠, or approximately 1.6×10 radians per second. For the hydrogen atom, zitterbewegung can be invoked as a heuristic way to derive the Darwin term, a small correction of the energy level of the s-orbitals.

Theory for a free fermion

The time-dependent Dirac equation is written as

H ψ ( x , t ) = i ψ t ( x , t ) {\displaystyle H\psi (\mathbf {x} ,t)=i\hbar {\frac {\partial \psi }{\partial t}}(\mathbf {x} ,t)} ,

where {\displaystyle \hbar } is the (reduced) Planck constant, ψ ( x , t ) {\displaystyle \psi (\mathbf {x} ,t)} is the wave function (bispinor) of a fermionic particle spin-½, and H is the Dirac Hamiltonian of a free particle:

H = β m c 2 + j = 1 3 α j p j c {\displaystyle H=\beta mc^{2}+\sum _{j=1}^{3}\alpha _{j}p_{j}c} ,

where m {\textstyle m} is the mass of the particle, c {\textstyle c} is the speed of light, p j {\textstyle p_{j}} is the momentum operator, and β {\displaystyle \beta } and α j {\displaystyle \alpha _{j}} are matrices related to the Gamma matrices γ μ {\textstyle \gamma _{\mu }} , as β = γ 0 {\textstyle \beta =\gamma _{0}} and α j = γ 0 γ j {\textstyle \alpha _{j}=\gamma _{0}\gamma _{j}} .

The Heisenberg picture implies that any operator Q obeys the equation

i Q t = [ H , Q ] . {\displaystyle -i\hbar {\frac {\partial Q}{\partial t}}=\left.}

In particular, the time-dependence of the position operator is given by

x k ( t ) t = i [ H , x k ] = c α k {\displaystyle \hbar {\frac {\partial x_{k}(t)}{\partial t}}=i\left=\hbar c\alpha _{k}} .

where xk(t) is the position operator at time t.

The above equation shows that the operator αk can be interpreted as the k-th component of a "velocity operator". To add time-dependence to αk, one implements the Heisenberg picture, which says

α k ( t ) = e i H t α k e i H t {\displaystyle \alpha _{k}(t)=e^{\frac {iHt}{\hbar }}\alpha _{k}e^{-{\frac {iHt}{\hbar }}}} .

The time-dependence of the velocity operator is given by

α k ( t ) t = i [ H , α k ] = 2 ( i γ k m σ k l p l ) = 2 i ( p k α k H ) {\displaystyle \hbar {\frac {\partial \alpha _{k}(t)}{\partial t}}=i\left=2\left(i\gamma _{k}m-\sigma _{kl}p^{l}\right)=2i\left(p_{k}-\alpha _{k}H\right)} ,

where

σ k l i 2 [ γ k , γ l ] . {\displaystyle \sigma _{kl}\equiv {\frac {i}{2}}\left.}

Now, because both pk and H are time-independent, the above equation can easily be integrated twice to find the explicit time-dependence of the position operator.

First:

α k ( t ) = ( α k ( 0 ) c p k H 1 ) e 2 i H t + c p k H 1 {\displaystyle \alpha _{k}(t)=\left(\alpha _{k}(0)-cp_{k}H^{-1}\right)e^{-{\frac {2iHt}{\hbar }}}+cp_{k}H^{-1}} ,

and finally

x k ( t ) = x k ( 0 ) + c 2 p k H 1 t + 1 2 i c H 1 ( α k ( 0 ) c p k H 1 ) ( e 2 i H t 1 ) {\displaystyle x_{k}(t)=x_{k}(0)+c^{2}p_{k}H^{-1}t+{\tfrac {1}{2}}i\hbar cH^{-1}\left(\alpha _{k}(0)-cp_{k}H^{-1}\right)\left(e^{-{\frac {2iHt}{\hbar }}}-1\right)} .

The resulting expression consists of an initial position, a motion proportional to time, and an unexpected oscillation term with an amplitude equal to the Compton wavelength. That oscillation term is the so-called zitterbewegung.

The zitterbewegung term vanishes on taking expectation values for wave-packets that are made up entirely of positive- (or entirely of negative-) energy waves. This can be achieved by taking a Foldy–Wouthuysen transformation. Thus, we arrive at the interpretation of the zitterbewegung as being caused by interference between positive- and negative-energy wave components.

Experimental simulation

Zitterbewegung of a free relativistic particle has never been observed. However, it has been simulated twice in model systems that provide condensed-matter analogues of the relativistic phenomenon. The first example, in 2010, placed a trapped ion in an environment such that the non-relativistic Schrödinger equation for the ion had the same mathematical form as the Dirac equation (although the physical situation is different). Then, in 2013, it was simulated in a setup with Bose–Einstein condensates.

Other proposals for condensed-matter analogues include graphene and topological insulators.

See also

References and notes

  1. Wunderlich, Christof (2010). "Quantum physics: Trapped ion set to quiver". Nature News and Views. 463 (7277): 37–39. doi:10.1038/463037a. PMID 20054385.
  2. Gerritsma; Kirchmair; Zähringer; Solano; Blatt; Roos (2010). "Quantum simulation of the Dirac equation". Nature. 463 (7277): 68–71. arXiv:0909.0674. Bibcode:2010Natur.463...68G. doi:10.1038/nature08688. PMID 20054392.
  3. Leblanc; Beeler; Jimenez-Garcia; Perry; Sugawa; Williams; Spielman (2013). "Direct observation of zitterbewegung in a Bose–Einstein condensate". New Journal of Physics. 15 (7): 073011. arXiv:1303.0914. doi:10.1088/1367-2630/15/7/073011.
  4. Katsnelson, M. I. (2006). "Zitterbewegung, chirality, and minimal conductivity in graphene". The European Physical Journal B. 51 (2): 157–160. arXiv:cond-mat/0512337.
  5. Dóra, Balász; Cayssol, Jérôme; Simon, Ference; Moessner, Roderich (2012). "Optically engineering the topological properties of a spin Hall insulator". Physical Review Letters. 108 (5): 056602. arXiv:1105.5963. doi:10.1103/PhysRevLett.108.056602.
  6. Shi, Likun; Zhang, Shoucheng; Cheng, Kai (2013). "Anomalous Electron Trajectory in Topological Insulators". Physical Review B. 87 (16). arXiv:1109.4771. doi:10.1103/PhysRevB.87.161115.

Further reading

  • Schrödinger, E. (1930). Über die kräftefreie Bewegung in der relativistischen Quantenmechanik [On the free movement in relativistic quantum mechanics] (in German). pp. 418–428. OCLC 881393652.
  • Schrödinger, E. (1931). Zur Quantendynamik des Elektrons [Quantum Dynamics of the Electron] (in German). pp. 63–72.
  • Messiah, A. (1962). "XX, Section 37" (pdf). Quantum Mechanics. Vol. II. pp. 950–952. ISBN 9780471597681.

External links

Category: