Misplaced Pages

Sirtuin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Signimu (talk | contribs) at 13:49, 1 November 2019 (Species distribution: Rewrite to be accurate + add ref). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 13:49, 1 November 2019 by Signimu (talk | contribs) (Species distribution: Rewrite to be accurate + add ref)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Protein family
Sir2 family
Crystallographic structure of yeast sir2 (rainbow colored cartoon, N-terminus = blue, C-terminus = red) complexed with ADP (space-filling model, carbon = white, oxygen = red, nitrogen = blue, phosphorus = orange) and a histone H4 peptide (magenta) containing an acylated lysine residue (displayed as spheres).
Identifiers
SymbolSIR2
PfamPF02146
Pfam clanCL0085
InterProIPR003000
PROSITEPS50305
SCOP21j8f / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1ici​, 1j8f​, 1m2g​, 1m2h​, 1m2j​, 1m2k​, 1m2n​, 1ma3​, 1q14​, 1q17​, 1q1a​, 1s5p​, 1s7g​, 1szc​, 1szd​, 1yc2​, 1yc5

Sirtuins are a class of proteins that possess either mono-ADP-ribosyltransferase, or deacylase activity, including deacetylase, desuccinylase, demalonylase, demyristoylase and depalmitoylase activity. The name Sir2 comes from the yeast gene 'silent mating-type information regulation 2', the gene responsible for cellular regulation in yeast.

Sirtuins have been implicated in influencing a wide range of cellular processes like aging, transcription, apoptosis, inflammation and stress resistance, as well as energy efficiency and alertness during low-calorie situations. Sirtuins can also control circadian clocks and mitochondrial biogenesis.

Yeast Sir2 and some, but not all, sirtuins are protein deacetylases. Unlike other known protein deacetylases, which simply hydrolyze acetyl-lysine residues, the sirtuin-mediated deacetylation reaction couples lysine deacetylation to NAD hydrolysis. This hydrolysis yields O-acetyl-ADP-ribose, the deacetylated substrate and nicotinamide, which is an inhibitor of sirtuin activity itself. The dependence of sirtuins on NAD links their enzymatic activity directly to the energy status of the cell via the cellular NAD:NADH ratio, the absolute levels of NAD, NADH or nicotinamide or a combination of these variables.

Sirtuins that deacetylate histones are structurally and mechanistically distinct from other classes of histone deacetylases (classes I, IIA, IIB and IV), which have a different protein fold and use Zn as a cofactor.

Species distribution

Sirtuin are family of signaling proteins that are ancient in animal evolution and that possess a highly conserved structure throughout all kingdoms of life. Whereas bacteria and archaea encode either one or two sirtuins, eukaryotes encode several sirtuins in their genomes. In yeast, roundworms, and fruitflies, sir2 is the name of one of the sirtuin-type proteins (see table below). Research on sirtuin protein started in 1991 by Leonard Guarente of MIT. Mammals possess seven sirtuins (SIRT1–7) that occupy different subcellular compartments: SIRT1, SIRT6 and SIRT7 are predominantly in the nucleus, SIRT2 in the cytoplasm, and SIRT3, SIRT4 and SIRT5 in the mitochondria.

Types

The first sirtuin was identified in yeast (a lower eukaryote) and named sir2. In more complex mammals, there are seven known enzymes that act in cellular regulation, as sir2 does in yeast. These genes are designated as belonging to different classes (I-IV), depending on their amino acid sequence structure. Several Gram positive prokaryotes as well as the Gram negative hyperthermophilic bacterium Thermotoga maritima possess sirtuins that are intermediate in sequence between classes and these are placed in the "undifferentiated" or "U" class. In addition, several Gram positive bacteria, including Staphylococcus aureus and Streptococcus pyogenes, as well as several fungi carry macrodomain-linked sirtuins (termed "class M" sirtuins). Most notable, the latter have an altered catalytic residue, which make them exclusive ADP-ribosyl transferases.

Class Subclass Species Intracellular
location
Activity Function
Bacteria Yeast Mouse Human
I a Sir2 or Sir2p,
Hst1 or Hst1p
Sirt1 SIRT1 nucleus, cytoplasm deacetylase metabolism
inflammation
b Hst2 or Hst2p Sirt2 SIRT2 nucleus and cytoplasm deacetylase cell cycle,
tumorigenesis
Sirt3 SIRT3 mitochondria deacetylase metabolism
c Hst3 or Hst3p,
Hst4 or Hst4p
II Sirt4 SIRT4 mitochondria ADP-ribosyl
transferase
insulin secretion
III Sirt5 SIRT5 mitochondria demalonylase, desuccinylase and deacetylase ammonia detoxification
IV a Sirt6 SIRT6 nucleus Demyristoylase, depalmitoylase, ADP-ribosyl
transferase and deacetylase
DNA repair,
metabolism,
TNF secretion
b Sirt7 SIRT7 nucleolus deacetylase rRNA
transcription
U cobB regulation of
acetyl-CoA synthetase
metabolism
M SirTM ADP-ribosyl transferase ROS detoxification

SIRT3, a mitochondrial protein deacetylase, plays a major role in the regulation of multiple metabolic proteins like isocitrate dehydrogenase of the TCA cycle. It also plays a major role in skeletal muscle as a metabolic adaptive response. Recent studies have shown that decreased levels of SIRT3 result in oxidative stress, as well as an increase in insulin resistance.

Since glutamine is a source of a-ketoglutarate used to replenish the TCA cycle, SIRT4 is important for its role in glutamine metabolism.

SIRT6 is shown in previous studies to be a critical epigenetic regulator of glucose metabolism. In a study, mice knockout with SIRT6 showed a fatal hypoglycemic phenotype. This resulted in death in a few weeks after birth and showed that hypoglycemia resulted mainly from increase of glucose uptake in brown adipose tissue and muscle.

Sirtuin list based on North/Verdin diagram.

Aging

Although preliminary studies with resveratrol, a possible SIRT1 activator, led some scientists to speculate that resveratrol may extend lifespan, there was no clinical evidence for such an effect, as of 2018.

Tissue fibrosis

Along with aging, many organs in the body have the same molecular mechanisms. These organs include the heart, vascular wall, lungs, kidney, liver, and the skin. Pathways and molecules in tissue fibrosis are regulated by SIRTs. This is the result of a decline in SIRT levels, as well as restoration of SIRT. SIRT elevation protects against aging and tissue fibrosis, however, extreme levels of SIRT are destructive. This elevation is the outcome of the activation of SIRTs. Through regulation of fibrosis-mediating pathways, sirtuins apply antifibrotic effects. It becomes difficult to classify the mechanistic effects of sirtuins because they are diverse. SIRTs interact with specific pathways and intracellular signaling molecules. Some of these pathways and signaling molecules include adenosine monophosphate-activated protein kinase (AMPK)-angiotensin-converting enzyme 2 (ACE2) signaling, manganese superoxide dismutase (MnSOD), mammalian target of rapamycin, and more.

DNA repair

SIRT1, SIRT6 and SIRT7 proteins are employed in DNA repair. SIRT1 protein promotes homologous recombination in human cells and is involved in recombinational repair of DNA breaks.

SIRT6 is a chromatin-associated protein and in mammalian cells is required for base excision repair of DNA damage. SIRT6 deficiency in mice leads to a degenerative aging-like phenotype. In addition, SIRT6 promotes the repair of DNA double-strand breaks. Furthermore, over-expression of SIRT6 can stimulate homologous recombinational repair.

SIRT7 knockout mice display features of premature aging. SIRT7 protein is required for repair of double-strand breaks by non-homologous end joining.

These findings suggest that SIRT1, SIRT6 and SIRT7 facilitate DNA repair and that this repair slows the aging process (see DNA damage theory of aging).

See also

References

  1. PDB: 1szd​; Zhao K, Harshaw R, Chai X, Marmorstein R (June 2004). "Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases". Proceedings of the National Academy of Sciences of the United States of America. 101 (23): 8563–8. Bibcode:2004PNAS..101.8563Z. doi:10.1073/pnas.0401057101. PMC 423234. PMID 15150415.
  2. ^ North BJ, Verdin E (2004). "Sirtuins: Sir2-related NAD-dependent protein deacetylases". Genome Biology. 5 (5): 224. doi:10.1186/gb-2004-5-5-224. PMC 416462. PMID 15128440.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. Yamamoto H, Schoonjans K, Auwerx J (August 2007). "Sirtuin functions in health and disease". Molecular Endocrinology. 21 (8): 1745–55. doi:10.1210/me.2007-0079. PMID 17456799.
  4. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (November 2011). "Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase". Science. 334 (6057): 806–9. Bibcode:2011Sci...334..806D. doi:10.1126/science.1207861. PMC 3217313. PMID 22076378.
  5. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, Hang HC, Hao Q, Lin H (April 2013). "SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine". Nature. 496 (7443): 110–3. Bibcode:2013Natur.496..110J. doi:10.1038/nature12038. PMC 3635073. PMID 23552949.
  6. ^ Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, Qu Y, Ortmayer M, Leidecker O, Cameron DR, Matic I, Peleg AY, Leys D, Traven A, Ahel I (July 2015). "Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens". Molecular Cell. 59 (2): 309–20. doi:10.1016/j.molcel.2015.06.013. PMC 4518038. PMID 26166706.
  7. EntrezGene 23410
  8. Preyat N, Leo O (May 2013). "Sirtuin deacylases: a molecular link between metabolism and immunity". Journal of Leukocyte Biology. 93 (5): 669–80. doi:10.1189/jlb.1112557. PMID 23325925.
  9. Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM, Herzog ED, Imai S (July 2010). "SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus". The Journal of Neuroscience. 30 (30): 10220–32. doi:10.1523/JNEUROSCI.1385-10.2010. PMC 2922851. PMID 20668205.
  10. Bürger M, Chory J (2018). "Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones". Communications Biology. 1: 217. doi:10.1038/s42003-018-0214-4. PMC 6281622. PMID 30534609.
  11. Marks PA, Xu WS (July 2009). "Histone deacetylase inhibitors: Potential in cancer therapy". Journal of Cellular Biochemistry. 107 (4): 600–8. doi:10.1002/jcb.22185. PMC 2766855. PMID 19459166.
  12. ^ Ye, X; Li, M; Hou, T; Gao, T; Zhu, WG; Yang, Y (3 January 2017). "Sirtuins in glucose and lipid metabolism". Oncotarget (Review). 8 (1): 1845–1859. doi:10.18632/oncotarget.12157. PMID 27659520.
  13. Blander G, Guarente L (2004). "The Sir2 family of protein deacetylases". Annual Review of Biochemistry. 73 (1): 417–35. doi:10.1146/annurev.biochem.73.011303.073651. PMID 15189148.
  14. Wade N (2006-11-08). "The quest for a way around aging". Health & Science. International Herald Tribune. Retrieved 2008-11-30.
  15. "MIT researchers uncover new information about anti-aging gene". Massachusetts Institute of Technology, News Office. 2000-02-16. Retrieved 2008-11-30.
  16. ^ Frye RA (July 2000). "Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins". Biochemical and Biophysical Research Communications. 273 (2): 793–8. doi:10.1006/bbrc.2000.3000. PMID 10873683.
  17. Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA (May 2003). "Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle". Molecular and Cellular Biology. 23 (9): 3173–85. doi:10.1128/MCB.23.9.3173-3185.2003. PMC 153197. PMID 12697818.
  18. Zhao K, Chai X, Marmorstein R (March 2004). "Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli". Journal of Molecular Biology. 337 (3): 731–41. doi:10.1016/j.jmb.2004.01.060. PMID 15019790.
  19. Schwer B, Verdin E (February 2008). "Conserved metabolic regulatory functions of sirtuins". Cell Metabolism. 7 (2): 104–12. doi:10.1016/j.cmet.2007.11.006. PMID 18249170.
  20. ^ Choi JE, Mostoslavsky R (June 2014). "Sirtuins, metabolism, and DNA repair". Current Opinion in Genetics & Development. 26: 24–32. doi:10.1016/j.gde.2014.05.005. PMC 4254145. PMID 25005742.
  21. Shetty, Ashok K.; Kodali, Maheedhar; Upadhya, Raghavendra; Madhu, Leelavathi N. (2018). "Emerging anti-aging strategies - scientific basis and efficacy (Review)". Aging and disease. 9 (6): 1165. doi:10.14336/ad.2018.1026. ISSN 2152-5250. PMC 6284760. PMID 30574426.
  22. Wyman AE, Atamas SP (March 2018). "Sirtuins and Accelerated Aging in Scleroderma". Current Rheumatology Reports. 20 (4): 16. doi:10.1007/s11926-018-0724-6. PMC 5942182. PMID 29550994.
  23. Vazquez BN, Thackray JK, Serrano L (March 2017). "Sirtuins and DNA damage repair: SIRT7 comes to play". Nucleus. 8 (2): 107–115. doi:10.1080/19491034.2016.1264552. PMC 5403131. PMID 28406750.
  24. Uhl M, Csernok A, Aydin S, Kreienberg R, Wiesmüller L, Gatz SA (April 2010). "Role of SIRT1 in homologous recombination". DNA Repair. 9 (4): 383–93. doi:10.1016/j.dnarep.2009.12.020. PMID 20097625.
  25. ^ Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (January 2006). "Genomic instability and aging-like phenotype in the absence of mammalian SIRT6". Cell. 124 (2): 315–29. doi:10.1016/j.cell.2005.11.044. PMID 16439206.
  26. McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, Bohr VA, Chua KF (January 2009). "SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair". Aging. 1 (1): 109–21. doi:10.18632/aging.100011. PMC 2815768. PMID 20157594.
  27. Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A (July 2012). "Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence". Proceedings of the National Academy of Sciences of the United States of America. 109 (29): 11800–5. Bibcode:2012PNAS..10911800M. doi:10.1073/pnas.1200583109. PMC 3406824. PMID 22753495.
  28. ^ Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L (July 2016). "SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair". The EMBO Journal. 35 (14): 1488–503. doi:10.15252/embj.201593499. PMC 4884211. PMID 27225932.

External links

Hydrolases: carbon-nitrogen non-peptide (EC 3.5)
3.5.1: Linear amides /
Amidohydrolases
3.5.2: Cyclic amides/
Amidohydrolases
3.5.3: Linear amidines/
Ureohydrolases
3.5.4: Cyclic amidines/
Aminohydrolases
3.5.5: Nitriles/
Aminohydrolases
3.5.99: Other
Transferases: glycosyltransferases (EC 2.4)
2.4.1: Hexosyl-
transferases
Glucosyl-
Galactosyl-
Glucuronosyl-
Fucosyl-
Mannosyl-
2.4.2: Pentosyl-
transferases
Ribose
ADP-ribosyltransferase
Phosphoribosyltransferase
Other
Other
2.4.99: Sialyl
transferases
Intracellular signaling peptides and proteins
MAP
Calcium
G protein
Heterotrimeric
cAMP:
cGMP:
Monomeric
Cyclin
Lipid
Other protein kinase
Serine/threonine:
Tyrosine:
Serine/threonine/tyrosine
Arginine
Other protein phosphatase
Serine/threonine:
Tyrosine:
both:
Apoptosis
GTP-binding protein regulators
Other
see also deficiencies of intracellular signaling peptides and proteins
Categories: