Revision as of 16:37, 12 May 2011 editCheMoBot (talk | contribs)Bots141,565 edits Updating {{chembox}} (no changed fields - added verified revid - updated 'UNII_Ref', 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (← Previous edit |
Latest revision as of 15:29, 30 December 2024 edit undoThe exergy conservationist (talk | contribs)23 edits →Properties: Page referred to ternary and quaternary alloys between BAs and GaAs. However, together these two binary alloys don't have enough different types of atoms to form a quaternary alloy. According to the linked reference, the quaternaries include indium (i.e., form BInGaAs).Tags: Mobile edit Mobile web edit |
(194 intermediate revisions by 80 users not shown) |
Line 1: |
Line 1: |
|
{{chembox |
|
{{Chembox |
|
| verifiedrevid = 385379308 |
|
| verifiedrevid = 428779018 |
|
| Name = Boron Arsenide |
|
| Name = Boron arsenide |
|
| ImageFile = Boron-arsenide-unit-cell-1963-CM-3D-balls.png |
|
| ImageFile = Boron-arsenide-unit-cell-1963-CM-3D-balls.png |
|
|
| ImageCaption = |
|
<!-- | ImageSize = 200px --> |
|
|
|
|Section1={{Chembox Identifiers |
|
| ImageName = BAs |
|
|
|
| CASNo_Ref = {{cascite|correct|??}} |
|
| ImageFile = B12As2_3D_side_view.jpg |
|
|
<!-- | ImageSize = 200px --> |
|
| CASNo = 12005-69-5 |
|
|
| ChemSpiderID = 8461243 |
|
| ImageName = B<sub>12</sub>As<sub>2</sub> |
|
|
|
| PubChem = 10285774 |
|
| Section1 = {{Chembox Identifiers |
|
|
|
| StdInChI=1S/AsB/c1-2 |
|
| CASNo = 12005-69-5 |
|
|
|
| StdInChIKey = DBKNIEBLJMAJHX-UHFFFAOYSA-N |
|
|
| SMILES = # |
|
|
}} |
|
|
|Section2={{Chembox Properties |
|
|
| Formula = BAs |
|
|
| MolarMass = 85.733 g/mol<ref name=b92>{{RubberBible92nd|page=4.53}}</ref> |
|
|
| Appearance =Brown cubic crystals<ref name=b92/> |
|
|
| Density = 5.22 g/cm<sup>3</sup><ref name=b92/> |
|
|
| Solubility = Insoluble |
|
|
| MeltingPtC = 1100 |
|
|
| ThermalConductivity = 1300 W/(m·K) (300 K) |
|
|
| MeltingPt_notes = decomposes<ref name=b92/> |
|
|
| BoilingPtC = |
|
|
| BandGap = 1.82 eV |
|
|
}} |
|
|
| Section3 = {{Chembox Structure |
|
|
| Structure_ref =<ref>{{cite journal|doi=10.1107/S0365110X58000827|title=New group III-group V compounds: BP and BAs|journal=Acta Crystallographica|volume=11|issue=4|pages=310|year=1958|last1=Perri|first1=J. A|last2=La Placa|first2=S|last3=Post|first3=B|doi-access=free|bibcode=1958AcCry..11..310P }}</ref> |
|
|
| CrystalStruct = Cubic (]), ], No. 216 |
|
|
| SpaceGroup = F{{overline|4}}3m |
|
|
| LattConst_a = 0.4777 nm |
|
|
| LattConst_b = |
|
|
| LattConst_c = |
|
|
| LattConst_alpha = |
|
|
| LattConst_beta = |
|
|
| LattConst_gamma = |
|
|
| UnitCellVolume = |
|
|
| UnitCellFormulas = 4 |
|
|
| Coordination = |
|
|
| MolShape = |
|
|
| OrbitalHybridisation = |
|
|
| Dipole = |
|
}} |
|
}} |
|
| Section2 = {{Chembox Properties |
|
|Section4={{Chembox Thermochemistry |
|
|
| DeltaHf = |
|
| Formula = BAs or B<sub>12</sub>As<sub>2</sub> |
|
|
|
| Entropy = |
|
| MolarMass = 85.733 g/mol |
|
|
|
}} |
|
| Appearance = |
|
|
|
|Section8={{Chembox Related |
|
| Density = 5.22 g/cm<sup>3</sup>, solid |
|
|
|
| OtherAnions = ]<br />]<br />] |
|
| Solubility = Insoluble |
|
|
|
| OtherCations = ]<br />]<br />] |
|
| MeltingPtC = 2027 |
|
|
|
}} |
|
| BoilingPtC = |
|
|
|
}} |
|
| BandGap = 1.50 eV(BAs); 3.47 eV(B<sub>12</sub>As<sub>2</sub>) |
|
|
|
{{Chembox |
|
}} |
|
|
|
| verifiedrevid = |
|
| Section4 = {{Chembox Thermochemistry |
|
|
|
| Name = Boron subarsenide |
|
| DeltaHf = |
|
|
|
| ImageFile = B12As2_3D_side_view.jpg |
|
| Entropy = |
|
|
|
| ImageCaption = |
|
}} |
|
|
| Section7 = {{Chembox Hazards |
|
|Section1={{Chembox Identifiers |
|
|
| CASNo_Ref = {{cascite|correct|??}} |
|
| EUClass = N/A |
|
|
|
| CASNo = 12005-70-8 |
|
| RPhrases = |
|
|
|
| ChemSpiderID = |
|
| SPhrases = |
|
|
|
| StdInChI=1S/2AsH2.B12/c;;1-2-3(1)5(1)6(1)4(1,2)8(2)7(2,3)9(3,5)11(5,6)10(4,6,8)12(7,8,9)11/h2*1H2; |
|
}} |
|
|
|
| StdInChIKey=RGSVMMFVXFQAMT-UHFFFAOYSA-N |
|
| Section8 = {{Chembox Related |
|
|
|
| SMILES = 12345671892%10%118%12%13%10%14%15%16%17%1835(6%16%19%12%14%1779%13%19)4%11%15%18.. |
|
| OtherAnions = ]<br />]<br />] |
|
|
|
}} |
|
| OtherCations = ]<br />]<br />] |
|
|
|
|Section2={{Chembox Properties |
|
|
| Formula = B<sub>12</sub>As<sub>2</sub> |
|
|
| MolarMass = 279.58 g/mol |
|
|
| Appearance = |
|
|
| Density = 3.56 g/cm<sup>3</sup><ref>Villars, Pierre (ed.) in ''Inorganic Solid Phases'', Springer, Heidelberg (ed.) |
|
|
SpringerMaterials</ref> |
|
|
| Solubility = Insoluble |
|
|
| MeltingPtC = |
|
|
| BoilingPtC = |
|
|
| BandGap = 3.47 eV |
|
|
}} |
|
|
| Section3 = {{Chembox Structure |
|
|
| Structure_ref =<ref>{{cite journal|doi=10.1557/PROC-97-145|title=Crystal Structure Refinements of Rhombohedral Symmetry Materials Containing Boron-Rich Icosahedra|journal=MRS Proceedings|volume=97|year=2011|last1=Morosin|first1=B|last2=Aselage|first2=T. L|last3=Feigelson|first3=R. S}}</ref> |
|
|
| CrystalStruct = ], ], No. 166 |
|
|
| SpaceGroup = R{{overline|3}}m |
|
|
| LattConst_a = 0.6149 nm |
|
|
| LattConst_b = 0.6149 nm |
|
|
| LattConst_c = 1.1914 nm |
|
|
| LattConst_alpha = 90 |
|
|
| LattConst_beta = 90 |
|
|
| LattConst_gamma = 120 |
|
|
| UnitCellVolume = |
|
|
| UnitCellFormulas = 6 |
|
|
| Coordination = |
|
|
| MolShape = |
|
|
| OrbitalHybridisation = |
|
|
| Dipole = |
|
}} |
|
}} |
|
|
|Section8={{Chembox Related |
|
|
| OtherAnions = ] |
|
|
| OtherCations = |
|
|
}} |
|
}} |
|
}} |
|
|
'''Boron arsenide''' (or '''Arsenic boride''') is a chemical compound involving ] and ], usually with a ] BAs. Other boron arsenide compounds are known, such as the subarsenide {{chem2|B12As2}}. Chemical synthesis of cubic BAs is very challenging and its single crystal forms usually have defects. |
|
|
|
|
|
|
==Properties== |
|
'''Boron arsenide''' is a chemical compound of ] and ]. It is a cubic (]) ] with a ] of 0.4777 nm and an ] of roughly 1.5 eV. It can be alloyed with ]. |
|
|
|
BAs is a cubic (]) ] in the ] family with a ] of 0.4777 nm and an ] of 1.82 eV. Cubic BAs is reported to decompose to the subarsenide B<sub>12</sub>As<sub>2</sub> at temperatures above 920 °C.<ref>{{cite journal|doi=10.1149/1.2401826|title=Preparation and Properties of Boron Arsenide Films|journal=Journal of the Electrochemical Society|volume=121|issue=3|pages=412|year=1974|last1=Chu|first1=T. L|last2=Hyslop|first2=A. E|bibcode=1974JElS..121..412C}}</ref> Boron arsenide has a melting point of 2076 °C. The thermal conductivity of BAs is exceptionally high, recently measured in single-crystal BAs to be around 1300 W/(m·K) at room temperature, making it the highest among all metals and semiconductors.<ref>{{cite journal|doi=10.1126/science.aat5522|title=Experimental observation of high thermal conductivity in boron arsenide|journal=Science|year = 2018|volume=361|issue=6402|pages=575–578|last1=Kang|first1=J.|last2=Li|first2=M.|last3=Wu|first3=H.|last4=Nguyen|first4=H.|last5=Hu|first5=Y.|pmid=29976798|doi-access=free|bibcode=2018Sci...361..575K}}</ref> |
|
|
|
|
|
|
The basic physical properties of cubic BAs have been experimentally measured:<ref>{{cite journal|doi=10.1063/1.5116025|title=Basic physical properties of cubic boron arsenide|journal=Applied Physics Letters|year = 2019|volume=115|issue=12|pages=122103|arxiv=1911.11281 |last1=Kang |first1=Joon Sang |last2=Li |first2=Man |last3=Wu |first3=Huan |last4=Nguyen |first4=Huuduy |last5=Hu |first5=Yongjie |bibcode=2019ApPhL.115l2103K }}</ref> Band gap (1.82 eV), optical refractive index (3.29 at wavelength 657 nm), elastic modulus (326 GPa), shear modulus, Poisson's ratio, thermal expansion coefficient (3.85×10<sup>−6</sup>/K), and heat capacity. It can be alloyed with ] to produce ternary and with ] to form quaternary semiconductors.<ref name="APL2000">{{cite journal|doi=10.1063/1.126058|title=BGaInAs alloys lattice matched to GaAs|journal=Applied Physics Letters|volume=76|issue=11|pages=1443|year=2000|last1=Geisz|first1=J. F|last2=Friedman|first2=D. J|last3=Olson|first3=J. M|last4=Kurtz|first4=Sarah R|author4-link= Sarah Kurtz |last5=Reedy|first5=R. C|last6=Swartzlander|first6=A. B|last7=Keyes|first7=B. M|last8=Norman|first8=A. G|bibcode=2000ApPhL..76.1443G}}</ref> |
|
Boron arsenide also occurs as an ] boride, B<sub>12</sub>As<sub>2</sub>.<ref>http://spectra.phy.bris.ac.uk/research_semiconductor.asp</ref> |
|
|
|
|
|
It belongs to ''R-3m'' space group with a rhombohedral structure based on clusters of boron atoms and two-atom As-As chains. It's a wide bandgap semiconductor (3.47 eV) with the extraordinary ability to “self-heal” radiation damage. This form can be grown on substrates such as ]. |
|
|
|
BAs has high electron and hole mobility, >1000 cm<sup>2</sup>/V/second, unlike silicon which has high electron mobility, but low hole mobility.<ref>{{Cite journal |last1=Shin |first1=Jungwoo |last2=Gamage |first2=Geethal Amila |last3=Ding |first3=Zhiwei |last4=Chen |first4=Ke |last5=Tian |first5=Fei |last6=Qian |first6=Xin |last7=Zhou |first7=Jiawei |last8=Lee |first8=Hwijong |last9=Zhou |first9=Jianshi |last10=Shi |first10=Li |last11=Nguyen |first11=Thanh |date=2022-07-22 |title=High ambipolar mobility in cubic boron arsenide |url=https://www.science.org/doi/10.1126/science.abn4290 |journal=Science |language=en |volume=377 |issue=6604 |pages=437–440 |doi=10.1126/science.abn4290 |pmid=35862526 |bibcode=2022Sci...377..437S |s2cid=250952849 |issn=0036-8075}}</ref> |
|
|
|
|
|
In 2023, a study in journal ] reported that subjected to high pressure BAs decrease its thermal conductivity contrary to the typical increase seen in most materials.<ref>{{Cite news |date=2023-01-27 |title=Surprising heat transfer behaviour seen in new semiconductor under pressure |url=https://physicsworld.com/surprising-heat-transfer-behaviour-seen-in-new-semiconductor-under-pressure/ |access-date=2023-01-30 |website=Physics World |language=en-GB}}</ref><ref>{{Cite journal |last1=Li |first1=Suixuan |last2=Qin |first2=Zihao |last3=Wu |first3=Huan |last4=Li |first4=Man |last5=Kunz |first5=Martin |last6=Alatas |first6=Ahmet |last7=Kavner |first7=Abby |last8=Hu |first8=Yongjie |date=23 November 2022 |title=Anomalous thermal transport under high pressure in boron arsenide |url=https://www.nature.com/articles/s41586-022-05381-x |journal=] |language=en |volume=612 |issue=7940 |pages=459–464 |doi=10.1038/s41586-022-05381-x |pmid=36418403 |bibcode=2022Natur.612..459L |s2cid=253838186 |issn=1476-4687}}</ref><ref>{{cite magazine |last1=Remmel |first1=Ariana |title=Boron arsenide breaks the rules under pressure |magazine=] |date=2 January 2023 |volume=101 |issue=1 |page=6 |doi=10.1021/cen-10101-scicon3 |url=https://cen.acs.org/materials/semiconductor-breaks-rules-physics-under/100/web/2022/12 |access-date=2 April 2023}}</ref> |
|
|
|
|
|
==Boron subarsenide== |
|
|
Boron arsenide also occurs as subarsenides, including the ] boride {{chem2|B12As2}}. It belongs to ''R{{overline|3}}m'' ] with a ] structure based on clusters of boron atoms and two-atom As–As chains. It is a wide-bandgap semiconductor (3.47 eV) with the extraordinary ability to "self-heal" radiation damage.<ref>{{cite journal|doi=10.1103/PhysRevB.51.11270|pmid=9977852|title=Defect clustering and self-healing of electron-irradiated boron-rich solids|journal=Physical Review B|volume=51|issue=17|pages=11270–11274|year=1995|last1=Carrard|first1=M|last2=Emin|first2=D|last3=Zuppiroli|first3=L|bibcode=1995PhRvB..5111270C}}</ref> This form can be grown on ]s such as ].<ref>{{cite journal | doi = 10.1063/1.2945635 | last1 = Chen | first1 = H. | year=2008 | last2 = Wang | first2 = G. | last3 = Dudley | first3 = M. | last4 = Xu | first4 = Z. | last5 = Edgar | first5 = J. H. | last6 = Batten | first6 = T. | last7 = Kuball | first7 = M. | last8 = Zhang | first8 = L. | last9 = Zhu | first9 = Y. | title = Single-Crystalline B<sub>12</sub>As<sub>2</sub> on ''m''-plane (1{{overline|1}}00) 15R-SiC | journal = Applied Physics Letters | volume = 92 | issue = 23 | page = 231917 | bibcode = 2008ApPhL..92w1917C | hdl = 2097/2186 | hdl-access = free }}</ref> Another use for ] fabrication<ref name="APL2000" /><ref>Boone, J. L. and Vandoren, T. P. (1980) ''Boron arsenide thin film solar cell development, ''Final Report, Eagle-Picher Industries, Inc., Miami, OK. .</ref> was proposed, but it is not currently used for this purpose. |
|
|
|
|
|
==Applications== |
|
==Applications== |
|
|
Boron arsenide is most attractive for use in electronics thermal management. Experimental integration with ] transistors to form GaN-BAs heterostructures has been demonstrated and shows better performance than the best GaN ] devices on silicon carbide or diamond substrates. Manufacturing BAs composites was developed as highly conducting and flexible thermal interfaces.<ref>{{cite journal |doi=10.1038/s41467-021-21531-7 |title=Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management |journal=Nature Communications |volume=12 |pages=1284 |year=2021 |last1=Cui |first1=Ying |last2=Qin |first2=Zihao |last3=Wu |first3=Huan |last4=Li |first4=Man |last5=Hu |first5=Yongjie |issue=1 |pmid=33627644 |pmc=7904764 |bibcode=2021NatCo..12.1284C }}.</ref> |
|
]s can be fabricated from boron arsenide. It's also an attractive choice for devices exposed to radiation which can severely |
|
|
|
|
|
degrade the electrical properties of conventional semiconductors, causing devices to cease functioning. Among the particularly intriguing possible applications for B<sub>12</sub>As<sub>2</sub> are beta cells, devices capable of producing electrical energy by coupling a radioactive beta emitter to a semiconductor junction, another space electronics. |
|
|
|
First-principles calculations have predicted that the ] of cubic BAs is remarkably high, over 2,200 W/(m·K) at room temperature, which is comparable to that of diamond and graphite.<ref>, Phys.org news (July 8, 2013)</ref> Subsequent measurements yielded a value of only 190 W/(m·K) due to the high density of defects.<ref>{{cite journal |doi=10.1063/1.4913441 |title=Experimental study of the proposed super-thermal-conductor: BAs |journal=Applied Physics Letters |volume=106 |issue=7 |pages=074105 |year=2015 |last1=Lv |first1=Bing |last2=Lan |first2=Yucheng |last3=Wang |first3=Xiqu |last4=Zhang |first4=Qian |last5=Hu |first5=Yongjie |last6=Jacobson |first6=Allan J |last7=Broido |first7=David |last8=Chen |first8=Gang |last9=Ren |first9=Zhifeng |last10=Chu |first10=Ching-Wu |bibcode=2015ApPhL.106g4105L |hdl=1721.1/117852 |osti=1387754 |s2cid=54074851 |url=https://dspace.mit.edu/bitstream/1721.1/117852/1/Lv2015APL_BAs.pdf |hdl-access=free}}</ref><ref>{{cite journal |last1=Zheng |first1=Qiang |last2=Polanco |first2=Carlos A. |last3=Du |first3=Mao-Hua |last4=Lindsay |first4=Lucas R. |last5=Chi |first5=Miaofang |author-link5=Miaofang Chi |last6=Yan |first6=Jiaqiang |last7=Sales |first7=Brian C. |date=6 September 2018 |title=Antisite Pairs Suppress the Thermal Conductivity of BAs |journal=Physical Review Letters |volume=121 |issue=10 |page=105901 |arxiv=1804.02381 |bibcode=2018PhRvL.121j5901Z |doi=10.1103/PhysRevLett.121.105901 |pmid=30240242 |s2cid=206316624}}</ref> More recent first-principles calculations incorporating four-phonon scattering predict a thermal conductivity of 1400 W/(m·K).<ref>{{cite journal |doi=10.1103/PhysRevB.96.161201 |title=Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids |journal=Physical Review B |volume=96 |issue=16 |pages=161201 |year=2017 |last1=Feng |first1=Tianli |last2=Lindsay |first2=Lucas |last3=Ruan |first3=Xiulin |bibcode=2017PhRvB..96p1201F |doi-access=free}}</ref> Later, defect-free boron arsenide crystals have been experimentally realized and measured with an ultrahigh thermal conductivity of 1300 W/(m·K), consistent with theory predictions. Crystals with small density of defects have shown thermal conductivity of 900–1000 W/(m·K).<ref>{{cite journal |doi=10.1126/science.aat8982 |pmid=29976796 |title=High thermal conductivity in cubic boron arsenide crystals |journal=Science |volume=361 |issue=6402 |pages=579–581 |year=2018 |last1=Li |first1=Sheng |last2=Zheng |first2=Qiye |last3=Lv |first3=Yinchuan |last4=Liu |first4=Xiaoyuan |last5=Wang |first5=Xiqu |last6=Huang |first6=Pinshane Y. |last7=Cahill |first7=David G. |last8=Lv |first8=Bing |bibcode=2018Sci...361..579L |doi-access=free}}</ref><ref>{{cite journal |doi=10.1126/science.aat7932 |pmid=29976797 |title=Unusual high thermal conductivity in boron arsenide bulk crystals |journal=Science |volume=361 |issue=6402 |pages=582–585 |year=2018 |last1=Tian |first1=Fei |last2=Song |first2=Bai |last3=Chen |first3=Xi |last4=Ravichandran |first4=Navaneetha K |last5=Lv |first5=Yinchuan |last6=Chen |first6=Ke |last7=Sullivan |first7=Sean |last8=Kim |first8=Jaehyun |last9=Zhou |first9=Yuanyuan |last10=Liu |first10=Te-Huan |last11=Goni |first11=Miguel |last12=Ding |first12=Zhiwei |last13=Sun |first13=Jingying |last14=Gamage |first14=Geethal Amila Gamage Udalamatta |last15=Sun |first15=Haoran |last16=Ziyaee |first16=Hamidreza |last17=Huyan |first17=Shuyuan |last18=Deng |first18=Liangzi |last19=Zhou |first19=Jianshi |last20=Schmidt |first20=Aaron J |last21=Chen |first21=Shuo |last22=Chu |first22=Ching-Wu |last23=Huang |first23=Pinshane Y |last24=Broido |first24=David |last25=Shi |first25=Li |last26=Chen |first26=Gang |last27=Ren |first27=Zhifeng |bibcode=2018Sci...361..582T |doi-access=free}}</ref> |
|
|
|
|
|
The cubic-shaped boron arsenide has been discovered to be better at conducting heat and electricity than ], as well as reportedly better than silicon at conducting both electrons and its positively charged counterpart, the "electron-hole."<ref>{{cite news |last=General |first=Ryan |title=Chinese MIT professor helps discover 'game changer' months after espionage charges |language=en |publisher=NextShark |date=18 August 2022 |url=https://www.yahoo.com/news/chinese-mit-professor-helps-discover-215437385.html |accessdate=19 August 2022 }}</ref> |
|
|
|
|
|
==References== |
|
==References== |
|
{{Reflist}} |
|
{{Reflist}} |
|
|
|
|
*{{cite journal |doi=10.1063/1.2945635 |last=Chen |first=H. ''et al'' |authorlink= |coauthors= |year=2008 |last2=Wang |month= |first2=Guan |last3=Dudley |first3=Michael |last4=Xu |first4=Zhou |last5=Edgar |first5=J. H. |last6=Batten |first6=Tim |last7=Kuball |first7=Martin |last8=Zhang |first8=Lihua |last9=Zhu |first9=Yimei|title=Single-crystalline B<sub>12</sub>As<sub>2</sub> on m-plane (1-100)15R-SiC |journal=Applied Physics Letters |volume=92 |issue=23 |pages=231917–1--231917–3 }} |
|
|
*{{cite journal |last=Hart |first=Gus L. W. |authorlink= |coauthors=Zunger, Alex |year=2000 |month= |title=Electronic structure of BAs and boride III-V alloys |journal=Physical Review B |volume=62 |issue=20 |pages=13522–13537 |doi=10.1103/PhysRevB.62.13522 |id={{arXiv|cond-mat|0009063}} |url= |accessdate= |quote= }} |
|
|
*{{cite book |title=Boron Chemistry at the Millennium |last=King |first=R. Bruce |authorlink= |coauthors= |year=1999 |publisher=Elsevier |location=New York |isbn=0444720065 |pages= |url= }} |
|
|
*{{cite journal |last=Ownby |first=P. D. |authorlink= |coauthors= |year=1975 |month= |title=Ordered Boron Arsenide |journal=Journal of the American Ceramic Society |volume=58 |issue=7–8 |pages=359–360 |doi=10.1111/j.1151-2916.1975.tb11514.x |url= |accessdate= |quote= }} |
|
|
|
|
|
|
==External links== |
|
==External links== |
|
|
* 2020 paper by Malica and Dal Corso - |
|
* thermophysical database entry |
|
|
* |
|
* |
|
|
*{{cite book | title = Boron Chemistry at the Millennium | last = King | first = R. B. | year = 1999 | publisher = Elsevier | location = New York | isbn = 0-444-72006-5 }} |
|
|
|
|
|
*{{cite journal | last = Ownby | first = P. D. | year = 1975 | title = Ordered Boron Arsenide | journal = Journal of the American Ceramic Society | volume = 58 | issue = 7–8 | pages = 359–360 | doi = 10.1111/j.1151-2916.1975.tb11514.x }} |
|
|
* , Science |
|
|
{{Arsenides}} |
|
{{Boron compounds}} |
|
{{Boron compounds}} |
|
|
|
|
Line 62: |
Line 133: |
|
] |
|
] |
|
] |
|
] |
|
] |
|
] |
|
|
] |
|
|
|
|
|
] |
|
] |
|