Misplaced Pages

Dimanganese decacarbonyl: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively
Page 1
Page 2
← Previous editContent deleted Content addedVisualWikitext
Revision as of 19:51, 4 May 2011 editCheMoBot (talk | contribs)Bots141,565 edits Updating {{chembox}} (no changed fields - updated 'UNII_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (report [[Wikipedia_talk:WikiProject_Chemica← Previous edit Latest revision as of 20:12, 26 August 2024 edit undoCrunchydillpickle (talk | contribs)Extended confirmed users11,191 editsm Electronic structure: spellTag: Visual edit 
(63 intermediate revisions by 40 users not shown)
Line 1: Line 1:
{{chembox {{chembox
| Reference =
| verifiedrevid = 396342847
| Verifiedfields = changed
| Name = Dimanganese decacarbonyl
| Watchedfields = changed
| ImageFile = Mn2(CO)10.png
| verifiedrevid = 427460022
| ImageSize = 200px
| ImageName = Dimanganese decacarbonyl | Name = Dimanganese decacarbonyl
| ImageFile = Mn2(CO)10.svg
| ImageFile1 = Dimanganese-decacarbonyl-3D-balls.png
| ImageSize =
| IUPACName = bis(pentacarbonylmanganese)(''Mn''—''Mn'')
| ImageName = Dimanganese decacarbonyl
| OtherNames = Manganese carbonyl<br />Decacarbonyldimanganese
| ImageFile1 = Dimanganese-decacarbonyl-3D-balls.png
| Section1 = {{Chembox Identifiers
| IUPACName = bis(pentacarbonylmanganese)(''Mn''—''Mn'')
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| OtherNames = Manganese carbonyl<br />Decacarbonyldimanganese
| Section1 = {{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 10170-69-1
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 451751 | ChemSpiderID = 451751
| EC_number = 233-445-6
| RTECS =
| PubChem = 517769
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 85SI7K7FWW
| InChI = 1/10CO.2Mn/c10*1-2;; | InChI = 1/10CO.2Mn/c10*1-2;;
| SMILES = ..#.#.#.#.#.#.#.#.#.#
| InChIKey = QFEOTYVTTQCYAZ-UHFFFAOYAD | InChIKey = QFEOTYVTTQCYAZ-UHFFFAOYAD
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI_Ref = {{stdinchicite|correct|chemspider}}
Line 18: Line 27:
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = QFEOTYVTTQCYAZ-UHFFFAOYSA-N | StdInChIKey = QFEOTYVTTQCYAZ-UHFFFAOYSA-N
| SMILES = O=C=(=C=O)(=C=O)(=C=O)(=C=O)(=C=O)(=C=O)(=C=O)(=C=O)=C=O
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 10170-69-1
| RTECS = GG0300000
}} }}
| Section2 = {{Chembox Properties | Section2 = {{Chembox Properties
| Formula = C<sub>10</sub>O<sub>10</sub>Mn<sub>2</sub> | Formula = Mn<sub>2</sub>(CO)<sub>10</sub>
| MolarMass = 389.98 g/mol | MolarMass = 389.98 g/mol
| Appearance = yellow crystals | Appearance = Yellow crystals
| Density = 1.750 g/cm<sup>3</sup> | Density = 1.750 g/cm<sup>3</sup>
| Solubility = insoluble | Solubility = Insoluble
| MeltingPt = 154 °C | MeltingPtC = 154
| BoilingPt = sublimes 60 °C<br /> (0.5 mm Hg) | BoilingPt= sublimes
| BoilingPtC = 60
| BoilingPt_notes = at 0.5 mm Hg
}} }}
| Section3 = {{Chembox Structure | Section3 = {{Chembox Structure
| Structure_ref = <ref name="Churchill">{{cite journal |last1=Melvyn Rowen Churchill, Kwame N. Amoh, and Harvey J. Wasserman |title=Redetermination of the crystal structure of dimanganese decacarbonyl and determination of the crystal structure of dirhenium decacarbonyl. Revised values for the manganese-manganese and rhenium-rhenium bond lengths in dimanganese decacarbonyl and dirhenium decacarbonyl |journal=Inorg. Chem. |year=1981 |volume=20 |issue=5 |pages=1609–1611 |doi=10.1021/ic50219a056 |url=https://pubs.acs.org/doi/10.1021/ic50219a056 }}</ref>
| Dipole = 0 ]
| CrystalStruct = monoclinic
| LattConst_a = 14.14 Å
| LattConst_b = 7.10 Å
| LattConst_c = 14.63 Å
| LattConst_beta = 105.2
| UnitCellFormulas = 4
| Dipole = 0 ]
}} }}
| Section7 = {{Chembox Hazards | Section7 = {{Chembox Hazards
| ExternalMSDS = | ExternalSDS =
| MainHazards = CO source | MainHazards = CO source
| GHS_ref=<ref>{{cite web |title=Decacarbonyldimanganese |url=https://pubchem.ncbi.nlm.nih.gov/compound/517769#section=Safety-and-Hazards |website=pubchem.ncbi.nlm.nih.gov |access-date=27 December 2021 |language=en}}</ref>
| RPhrases = 23/24/25
| GHSPictograms = {{GHS06}}
| SPhrases = 22-26-36/37/39-45
| GHSSignalWord = Danger
| HPhrases = {{H-phrases|301|311|331}}
| PPhrases = {{P-phrases|261|264|270|271|280|301+310|302+352|304+340|311|312|321|322|330|361|363|403+233|405|501}}
}} }}
| Section8 = {{Chembox Related | Section8 = {{Chembox Related
| Function = compounds | OtherFunction_label = compounds
| OtherFunctn = ]<br />]<br /> ] | OtherFunction = ]<br />]<br />]<br /> ]
}} }}
}} }}


'''Dimanganese decacarbonyl''',<ref>{{Citation |last1=Pauson |first1=Peter L. |title=Decacarbonyldimanganese |date=2009-09-15 |url=https://onlinelibrary.wiley.com/doi/10.1002/047084289X.rd001.pub2 |encyclopedia=Encyclopedia of Reagents for Organic Synthesis |pages=rd001.pub2 |editor-last=John Wiley & Sons, Ltd |access-date=2023-03-12 |place=Chichester, UK |publisher=John Wiley & Sons, Ltd |language=en |doi=10.1002/047084289x.rd001.pub2 |isbn=978-0-471-93623-7 |last2=Friestad |first2=Gregory K.}}</ref> which has the ] Mn<sub>2</sub>(CO)<sub>10</sub>, is a binary bimetallic ] centered around the first row ] ]. The first reported synthesis of Mn<sub>2</sub>(CO)<sub>10</sub> was in 1954 at ] and was performed by Brimm, Lynch, and Sesny.<ref name=":0">{{Cite journal |last1=Brimm |first1=E. O. |last2=Lynch |first2=M. A. |last3=Sesny |first3=W. J. |date=July 1954 |title=Preparation and Properties of Manganese Carbonyl |url=https://pubs.acs.org/doi/abs/10.1021/ja01643a071 |journal=Journal of the American Chemical Society |language=en |volume=76 |issue=14 |pages=3831–3835 |doi=10.1021/ja01643a071 |issn=0002-7863}}</ref> Their hypothesis about, and synthesis of, dimanganese decacarbonyl was fundamentally guided by the previously known ] (Re<sub>2</sub>(CO)<sub>10</sub>), the heavy atom ] of Mn<sub>2</sub>(CO)<sub>10</sub>. Since its first synthesis, Mn<sub>2</sub>(CO)<sub>10</sub> has been use sparingly as a ] in the synthesis of other chemical species, but has found the most use as a simple system on which to study fundamental chemical and physical phenomena, most notably, the ]. Dimanganese decacarbonyl is also used as a classic example to reinforce fundamental topics in ] like ], the ], ], ],<ref>{{Cite journal |last=Parkin |first=Gerard |date=May 2006 |title=Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts |url=https://pubs.acs.org/doi/abs/10.1021/ed083p791 |journal=Journal of Chemical Education |language=en |volume=83 |issue=5 |pages=791 |doi=10.1021/ed083p791 |bibcode=2006JChEd..83..791P |issn=0021-9584}}</ref> and the ].
'''Dimanganese decacarbonyl''' is the ] with the ] Mn<sub>2</sub>(CO)<sub>10</sub>. This ] is an important ] in the ] of ].<ref>Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. ISBN 978-3-29390-6</ref>


==Synthesis== ==Synthesis==
Many procedures have been reported for the synthesis of Mn<sub>2</sub>(CO)<sub>10</sub> since 1954, the two most common general types are discussed herein. Some of these methods were not designed to create Mn<sub>2</sub>(CO)<sub>10</sub>, but rather treat Mn(I), Mn(II), or Mn(-I) as an ] or ] agent, respectively, for other species in the reaction, but produce Mn<sub>2</sub>(CO)<sub>10</sub> nonetheless.
The compound was first prepared in low yield by the reduction of manganese iodide with ] under ].<ref>Brimm, E. O.; Lynch, M. A.; Sesny, W. J. "Preparation and Properties of Manganese Carbonyl" Journal of the American Chemical Society 1954, volume 76, page 3831 - 3835.</ref> A more efficient preparation entails reduction of anhydrous ] with sodium ] ketyl under 200 atmospheres of CO.<ref>King, R. B. Organometallic Syntheses. Volume 1 Transition-Metal Compounds; Academic Press: New York, 1965. ISBN 0-444-42607-8</ref> The availability of inexpensive ] ("MMT") has led to a low pressure route to Mn<sub>2</sub>(CO)<sub>10</sub>.<ref>King, R. B.; Stokes, J. C.; Korenowski, T. F. "A Convenient Synthesis of Dimanganese Decarbonyl from Inexpensive Starting Materials at Atmospheric Pressure" Journal of Organometallic Chemistry 1968, volume 11, Pages 641-643.</ref>


=== Reduction/carbonylation syntheses ===
==Structure==
The ] route involves the reduction of a Mn(I) or Mn(II) ] to the Mn(0) species in concert with carbonylation to a ] metal center with CO gas. The carbonylation using CO can be under heightened pressures of CO, relative to atmospheric pressure, or at ambient pressure. Examples of each are given.
Mn<sub>2</sub>(CO)<sub>10</sub> has no bridging CO ligands: it can be described (CO)<sub>5</sub>Mn-Mn(CO)<sub>5</sub>. There are two kinds of CO ligands; one CO on each Mn is coaxial with the Mn-Mn bond, and four on each manganese that are perpendicular to it (equatorial). In the stable rotamer, the two Mn(CO)<sub>5</sub> subunits are ]. The overall molecule thus belongs to the ] D<sub>4d</sub>, which is an uncommon symmetry.


==== High pressure carbonylation ====
==Reactions==
As previously mentioned, Mn<sub>2</sub>(CO)<sub>10</sub> was first prepared in 1954 by Brimm, Lynch, and Sesny, albeit in yields of ~1%, by the reduction of ] with ] under 3000 psi (~200 atm) of ] (CO).<ref name=":0" /> The ] is represented by:<chem display="block">2 MnI2 + 2 Mg + 10 CO -> Mn2(CO)10 + 2 MgI2</chem>A more efficient preparation was developed in 1958 and entails reduction of ] ] with ] under similarly high pressures (200 atm) of CO.<ref>{{Cite journal |last1=Closson |first1=Rex D. |last2=Buzbee |first2=Lloyd R. |last3=Ecke |first3=George G. |date=December 1958 |title=A New Metal Carbonyl Synthesis 1 |url=https://pubs.acs.org/doi/abs/10.1021/ja01556a005 |journal=Journal of the American Chemical Society |language=en |volume=80 |issue=23 |pages=6167–6170 |doi=10.1021/ja01556a005 |issn=0002-7863}}</ref> This method yielded ~32% of the dimanganese decacarbonyl complex, producing enough material for the first real opportunities to rigorously study the chemical and physical properties of the molecule. This method is represented by the balanced equation:
Mn<sub>2</sub>(CO)<sub>10</sub> is air stable as a crystalline solid, but solutions require ] techniques. It finds limited use in ].<ref>Pauson, P. L. “Decacarbonyldimanganese” in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. DOI: 10.1002/047084289.</ref>
]
Characteristic reactions:


==== Low pressure carbonylation ====
*Reduction of Mn<sub>2</sub>(CO)<sub>10</sub> gives the manganese pentacarbonyl anion, which can be isolated as a ]:

:Mn<sub>2</sub>(CO)<sub>10</sub> + 2 Na → 2 Na
Despite successes in the synthesis of Mn<sub>2</sub>(CO)<sub>10</sub>, the safety concerns and ] surrounding high pressure carbonylation methods necessitated alternative, low pressure procedures to obtain the target compound. In 1968, the first ambient CO pressure carbonylation synthesis of Mn<sub>2</sub>(CO)<sub>10</sub> was reported from the commercially available and inexpensive ] (MMT) and ] as the reductant.<ref>{{Cite journal |last1=King |first1=R. B. |last2=Stokes |first2=J. C. |last3=Korenowski |first3=T. F. |date=1968-01-01 |title=A convenient synthesis of dimanganese decarbonyl from inexpensive starting materials at atmospheric pressure |url=https://dx.doi.org/10.1016/0022-328X%2868%2980099-3 |journal=Journal of Organometallic Chemistry |language=en |volume=11 |pages=641–643 |doi=10.1016/0022-328X(68)80099-3 |issn=0022-328X}}</ref> The balanced equation being:<chem display="block">2 Mn(\eta^5-(CH3)C5H4)(CO)3 + 2 Na + 4 CO -> Mn2(CO)10 + 2Na</chem>The efficiency of the method ranged from 16 to 20% yield, lower than what was previously reported, however, it could be performed more safely and on ].
The anion is a versatile nucleophile. Protonation gives the ] , and methylation gives .

*Halogenation of Mn<sub>2</sub>(CO)<sub>10</sub> proceeds with scission of the Mn-Mn bond.
=== Dimerization syntheses ===
:Mn<sub>2</sub>(CO)<sub>10</sub> + ] → 2
The second overarching method used to make Mn<sub>2</sub>(CO)<sub>10</sub> is similar to the first in that it usually requires alteration of a Mn(I), or in this case, Mn(-I) to the corresponding Mn(0) species. These preparations differ, however, by beginning with manganese precursors, sometimes commercially available, that need no additional CO ligands and simply ] to form the target molecule. This poses the significant logistic and safety advantage of not dealing with toxic CO gas and is the prevailing general method for the academic synthesis of Mn<sub>2</sub>(CO)<sub>10</sub>.

The first explicit success in this area was published in 1977, which featured a ] Mn source, with Se(PF<sub>2</sub>)<sub>2</sub> as the reductant.<ref>{{Cite journal |last1=Arnold |first1=David E. J. |last2=Cromie |first2=Ernest R. |last3=Rankin |first3=David W. H. |date=1977 |title=Preparation and chemical and spectroscopic properties of bis(difluorophosphino) selenide |url=http://xlink.rsc.org/?DOI=dt9770001999 |journal=Journal of the Chemical Society, Dalton Transactions |language=en |issue=20 |pages=1999–2004 |doi=10.1039/dt9770001999 |issn=0300-9246}}</ref> The balanced equation for this transformation is:<chem display="block">2 Mn(CO)5(H) + Se(PF2)2 -> Mn2(CO)10 + PF2H + Se=PF2H</chem>Alterations of the terminal reductant have been reported in the manganese ] case.<ref>{{Cite journal |last1=Sweany |first1=Ray |last2=Butler |first2=Steven C. |last3=Halpern |first3=Jack |date=1981-06-23 |title=The hydrogenation of 9,10-dimethylanthracene by hydridopentacarbonylmanganese(I). Evidence for a free-radical mechanism |url=https://www.sciencedirect.com/science/article/pii/S0022328X0082954X |journal=Journal of Organometallic Chemistry |language=en |volume=213 |issue=2 |pages=487–492 |doi=10.1016/S0022-328X(00)82954-X |issn=0022-328X}}</ref><ref>{{Cite journal |last1=Booth |first1=Brian L. |last2=Haszeldine |first2=Robert N. |last3=Holmes |first3=Robert G. G. |date=1982 |title=Reactions involving transition metals. Part 16. Rhodium, iridium, platinum, and gold complexes containing the bis(trifluoromethyl)amino-oxy-ligand |url=http://xlink.rsc.org/?DOI=dt9820000523 |journal=Journal of the Chemical Society, Dalton Transactions |language=en |issue=3 |pages=523–529 |doi=10.1039/dt9820000523 |issn=0300-9246}}</ref><ref>{{Cite journal |last1=Tam |first1=Wilson |last2=Marsi |first2=Marianne |last3=Gladysz |first3=J. A. |date=May 1983 |title=Bimetallic anionic formyl complexes: synthesis and properties |url=https://pubs.acs.org/doi/abs/10.1021/ic00152a001 |journal=Inorganic Chemistry |language=en |volume=22 |issue=10 |pages=1413–1421 |doi=10.1021/ic00152a001 |issn=0020-1669}}</ref> Similar methods exist for Mn(CO)<sub>5</sub>X compounds where X = ], ], or ], and more rarely, Mn(CO)<sub>6</sub> bound with a ].<ref>{{Cite journal |last1=Kolthammer |first1=Brian W. S. |last2=Legzdins |first2=Peter |date=1978 |title=Organometallic nitrosyl chemistry. Part 3. Some aspects of the chemistry of bis |url=http://xlink.rsc.org/?DOI=DT9780000031 |journal=J. Chem. Soc., Dalton Trans. |language=en |issue=1 |pages=31–35 |doi=10.1039/DT9780000031 |issn=0300-9246}}</ref><ref>{{Cite journal |last1=Manning |first1=Mark C. |last2=Trogler |first2=William C. |date=1981-01-01 |title=Reduction of metal carbonyls with alkali metal carbides |url=https://www.sciencedirect.com/science/article/pii/S0020169300837524 |journal=Inorganica Chimica Acta |language=en |volume=50 |pages=247–250 |doi=10.1016/S0020-1693(00)83752-4 |issn=0020-1693}}</ref><ref>{{Cite journal |last1=Gibson |first1=Dorothy H. |last2=Hsu |first2=Wen-Liang |date=1982-01-01 |title=Reactions of manganese carbonyls with quaternary ammonium halides |url=https://www.sciencedirect.com/science/article/pii/S0020169300873144 |journal=Inorganica Chimica Acta |language=en |volume=59 |pages=93–99 |doi=10.1016/S0020-1693(00)87314-4 |issn=0020-1693}}</ref><ref>{{Cite journal |last1=Kuchynka |first1=D. J. |last2=Amatore |first2=C. |last3=Kochi |first3=J. K. |date=November 1986 |title=Manganese(0) radicals and the reduction of cationic carbonyl complexes: selectivity in the ligand dissociation from 19-electron species |url=https://pubs.acs.org/doi/abs/10.1021/ic00243a009 |journal=Inorganic Chemistry |language=en |volume=25 |issue=23 |pages=4087–4097 |doi=10.1021/ic00243a009 |issn=0020-1669}}</ref><ref>{{Cite journal |last1=Geier |first1=Jens |last2=Willner |first2=Helge |last3=Lehmann |first3=Christian W. |last4=Aubke |first4=Friedhelm |date=2007-08-01 |title=Formation of Hexacarbonylmanganese(I) Salts, + X - , in Anhydrous HF |url=https://pubs.acs.org/doi/10.1021/ic700798z |journal=Inorganic Chemistry |language=en |volume=46 |issue=17 |pages=7210–7214 |doi=10.1021/ic700798z |pmid=17616186 |issn=0020-1669}}</ref><ref>{{Cite journal |last1=Manning |first1=Peter J. |last2=Peterson |first2=Louis K. |last3=Wada |first3=Fumio |last4=Dhami |first4=Randi S. |date=1986-04-01 |title=Synthesis and reactions of complexes (M = Mn, Re; X = Halogen) |url=https://www.sciencedirect.com/science/article/pii/S0020169300845818 |journal=Inorganica Chimica Acta |language=en |volume=114 |issue=1 |pages=15–20 |doi=10.1016/S0020-1693(00)84581-8 |issn=0020-1693}}</ref>
Using similar logic, stable salts of the pentacarbonyl manganate ] can also be employed with an oxidant to access the same Mn<sub>2</sub>(CO)<sub>10</sub> complex.<ref>{{Cite journal |last1=DuBois |first1=Donn A. |last2=Duesler |first2=Eileen N. |last3=Paine |first3=Robert T. |date=January 1985 |title=Formation and x-ray crystal structure determination of an unusual phosphorus-phosphorus coupled bicyclodiphosphazane complex |url=https://pubs.acs.org/doi/abs/10.1021/ic00195a003 |journal=Inorganic Chemistry |language=en |volume=24 |issue=1 |pages=3–5 |doi=10.1021/ic00195a003 |issn=0020-1669}}</ref><ref>{{Cite journal |last1=Ozin |first1=Geoffrey A. |last2=Coleson |first2=Kraig M. |last3=Huber |first3=Helmut X. |date=March 1983 |title=Reactions of solvated metal atoms with organometallic complexes in solution. A metal atom microsolution spectroscopic and synthetic study of the reaction pathways available to singly metal-metal bonded organometallic complexes and their organometallic anions |url=https://pubs.acs.org/doi/abs/10.1021/om00075a011 |journal=Organometallics |language=en |volume=2 |issue=3 |pages=415–420 |doi=10.1021/om00075a011 |issn=0276-7333}}</ref><ref>{{Cite journal |last1=Müller |first1=Manfred |last2=Vahrenkamp |first2=Heinrich |date=June 1983 |title=Cluster‐Konstruktion: Schrittweiser Aufbau von μ 3 ‐RP‐Trimetall‐Clustern über P–Hal‐Verbindungen |url=https://onlinelibrary.wiley.com/doi/10.1002/cber.19831160621 |journal=Chemische Berichte |language=en |volume=116 |issue=6 |pages=2322–2336 |doi=10.1002/cber.19831160621 |issn=0009-2940}}</ref> An example of this is the reduction of ] ] with sodium pentacarbonyl manganate to produce the dimer of each.<ref>{{Cite journal |last1=Hughes |first1=Russell P. |last2=Lambert |first2=James M. J. |last3=Reisch |first3=John W. |last4=Smith |first4=Wayne L. |date=October 1982 |title=Reinvestigations of some reactions of metal carbonyl anions with cyclopropenium cations. Conversion of .eta.3-cyclopropenyl to .eta.3-cyclobutenonyl ligands |url=https://pubs.acs.org/doi/abs/10.1021/om00070a027 |journal=Organometallics |language=en |volume=1 |issue=10 |pages=1403–1405 |doi=10.1021/om00070a027 |issn=0276-7333}}</ref> The balanced equation is given by:
]
One additional interesting synthesis of Mn<sub>2</sub>(CO)<sub>10</sub> occurs by combination of a hexacarbonylmanganese(I) tetrafluoroborate salt with a sodium pentacarbonyl manganate salt. In this instance, manganese is both the oxidant and reductant, producing two formal Mn(0) atoms.<ref>{{Cite journal |last1=Lee |first1=K. Y. |last2=Kuchynka |first2=D. J. |last3=Kochi |first3=J. K. |date=1987-09-01 |title=Formation of metal-metal bonds by ion-pair annihilation. Dimanganese carbonyls from manganate(I-) anions and manganese(I) cations |url=https://pubs.acs.org/doi/abs/10.1021/om00152a010 |journal=Organometallics |language=en |volume=6 |issue=9 |pages=1886–1897 |doi=10.1021/om00152a010 |issn=0276-7333}}</ref> The balanced equation is:<chem display="block">(BF4) + Na -> Mn2(CO)10 + Na + CO</chem>

==Structure and bonding==
High precision ] and ] of the physical and ] structures of Mn<sub>2</sub>(CO)<sub>10</sub> have been performed and are discussed with respect to the published literature below, however, a qualitative approach can also be taken to predict its constitutional structure using fundamental principles of ] and organometallic chemistry.

The ] composition of Mn<sub>2</sub>(CO)<sub>10</sub>, derived from ], informs a 5:1 ratio of CO to Mn. The assumed binary carbonyl complex given this information is pentacarbonylmanganese(0). However, the sum of the d-electron count (7 for Mn(0)) and the electron contributions from the ligands (10 for 5 CO) yields a 17-electron, ] complex for Mn(CO)<sub>5</sub>. This is a highly unstable configuration, isolobal to the ], which can be expected to homodimerize to the ] ] dinuclear complex in order for both Mn ] to achieve an 18-electron, ]. Indeed, the true structure of the Mn(0) binary carbonyl structure is a dimeric, dinuclear complex.

=== Crystal structure ===
This hypothesized structure was confirmed explicitly through ], first in two dimensions in 1957,<ref>{{Cite journal |last1=Dahl |first1=Lawrence F. |last2=Ishishi |first2=Etsuro |last3=Rundle |first3=R. E. |date=2004-10-06 |title=Polynuclear Metal Carbonyls. I. Structures of Mn2(CO)10 and Re2(CO)10 |url=https://aip.scitation.org/doi/abs/10.1063/1.1743615 |journal=The Journal of Chemical Physics |language=en |volume=26 |issue=6 |pages=1750 |doi=10.1063/1.1743615 |issn=0021-9606}}</ref> followed by its single crystal three-dimensional analysis in 1963.<ref>{{Cite journal |last1=Dahl |first1=L. F. |last2=Rundle |first2=R. E. |date=1963-05-10 |title=The crystal structure of dimanganese decacarbonyl Mn2(CO)10 |url=https://scripts.iucr.org/cgi-bin/paper?a03815 |journal=Acta Crystallographica |language=en |volume=16 |issue=5 |pages=419–426 |doi=10.1107/S0365110X63001080 |issn=0365-110X}}</ref> The crystal structure of Mn<sub>2</sub>(CO)<sub>10</sub> was redetermined at high precision at room temperature in 1981 and bond lengths mentioned herein refer to results from that study.<ref>{{Cite journal |last1=Churchill |first1=Melvyn Rowen |last2=Amoh |first2=Kwame N. |last3=Wasserman |first3=Harvey J. |date=May 1981 |title=Redetermination of the crystal structure of dimanganese decacarbonyl and determination of the crystal structure of dirhenium decacarbonyl. Revised values for the manganese-manganese and rhenium-rhenium bond lengths in dimanganese decacarbonyl and dirhenium decacarbonyl |url=https://pubs.acs.org/doi/abs/10.1021/ic50219a056 |journal=Inorganic Chemistry |language=en |volume=20 |issue=5 |pages=1609–1611 |doi=10.1021/ic50219a056 |issn=0020-1669}}</ref> Mn<sub>2</sub>(CO)<sub>10</sub> has no ] CO ligands: it can be described as containing two axially-linked (CO)<sub>5</sub>Mn- subunits. These Mn subunits are spaced at a distance of 290.38(6) pm, a ] that is longer than that predicted by ].<ref>{{Cite journal |last=Pyykkö |first=Pekka |date=2015-03-19 |title=Additive Covalent Radii for Single-, Double-, and Triple-Bonded Molecules and Tetrahedrally Bonded Crystals: A Summary |url=https://pubs.acs.org/doi/10.1021/jp5065819 |journal=The Journal of Physical Chemistry A |language=en |volume=119 |issue=11 |pages=2326–2337 |doi=10.1021/jp5065819 |pmid=25162610 |bibcode=2015JPCA..119.2326P |issn=1089-5639}}</ref> There are two kinds of CO ligands; one CO linked to each Mn atom that is coaxial with the Mn-Mn bond and four “equatorial” carbonyls bonded to each Mn atom that are nearly perpendicular to the Mn-Mn bond (Mn’-Mn-CO(equatorial) angles range from 84.61(7) to 89.16(7) degrees). The axial carbonyl distance of (181.1 ]) is 4.5 ] shorter than the average equatorial manganese-carbonyl distance of 185.6 ]. In the stable ], the two Mn(CO)<sub>5</sub> subunits are ]. Thus, the overall molecule has approximate ] D<sub>4d</sub> symmetry, which is an uncommon symmetry shared with ]. The Mn<sub>2</sub>(CO)<sub>10</sub> molecule is isomorphous with the other ] binary metal carbonyls Tc<sub>2</sub>(CO)<sub>10</sub> and ].
]

=== Electronic structure ===
Initial fundamental experimental and theoretical studies on the electronic structure of Mn<sub>2</sub>(CO)<sub>10</sub> were performed used a mixture of ], ], and an iterative ] ] calculation.<ref>{{Cite journal |last1=Levenson |first1=Robert A. |last2=Gray |first2=Harry B. |last3=Ceasar |first3=Gerald P. |date=June 1970 |title=Electronic and vibrational spectroscopy in a nematic liquid crystal solvent. Band polarizations of binuclear metal carbonyls |url=https://pubs.acs.org/doi/abs/10.1021/ja00715a018 |journal=Journal of the American Chemical Society |language=en |volume=92 |issue=12 |pages=3653–3658 |doi=10.1021/ja00715a018 |issn=0002-7863}}</ref><ref>{{Cite journal |last1=Levenson |first1=Robert A. |last2=Gray |first2=Harry B. |date=October 1975 |title=Electronic structure of compounds containing metal-metal bonds. Decacarbonyldimetal and related complexes |url=https://pubs.acs.org/doi/abs/10.1021/ja00854a015 |journal=Journal of the American Chemical Society |language=en |volume=97 |issue=21 |pages=6042–6047 |doi=10.1021/ja00854a015 |issn=0002-7863}}</ref> The electronic structure of Mn<sub>2</sub>(CO)<sub>10</sub> was most reported in 2017 using the ] with ].<ref>{{Cite journal |last1=Menacer |first1=Rafik |last2=May |first2=Abdelghani |last3=Belkhiri |first3=Lotfi |last4=Mousser |first4=Abdelhamid |date=2017-11-28 |title=Electronic structure and bonding of the dinuclear metal M2(CO)10 decacarbonyls: applications of natural orbitals for chemical valence |url=https://doi.org/10.1007/s00894-017-3523-5 |journal=Journal of Molecular Modeling |language=en |volume=23 |issue=12 |pages=358 |doi=10.1007/s00894-017-3523-5 |pmid=29185066 |s2cid=3814626 |issn=0948-5023}}</ref> The electronic structure described herein, along with relevant orbital plots, are reproduced from the methods used in that study using Orca (5.0.3)<ref>{{Cite journal |last=Neese |first=Frank |date=January 2012 |title=The ORCA program system |url=https://onlinelibrary.wiley.com/doi/10.1002/wcms.81 |journal=WIREs Computational Molecular Science |language=en |volume=2 |issue=1 |pages=73–78 |doi=10.1002/wcms.81 |s2cid=62137389 |issn=1759-0876}}</ref> and visualized using IBOView (v20150427).<ref>{{Cite journal |last=Knizia |first=Gerald |date=2013-11-12 |title=Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts |url=https://pubs.acs.org/doi/10.1021/ct400687b |journal=Journal of Chemical Theory and Computation |language=en |volume=9 |issue=11 |pages=4834–4843 |doi=10.1021/ct400687b |pmid=26583402 |arxiv=1306.6884 |s2cid=17717923 |issn=1549-9618}}</ref> The two main interactions of interest in the system are the metal-to-ligand ] interactions and the metal-metal ]ing orbital. The pi-backbonding interactions illustrated below occur between the ] and the CO π* ]. The degenerate d<sub>xz</sub> and d<sub>yz</sub> backbonding interactions with both axial and equatorial CO ligands is the ]. More total ] occurs onto the axial CO antibonding orbital than does the equatorial, which is thought to rationalize the shorter Mn-C bond length.<gallery mode="packed" caption="Two degenerate pi-backbonding orbitals of dimanganese decacarbonyl">
File:Mn2(CO)10Backbonding1.png
File:Mn2(CO)10Backbonding2.png|alt=
</gallery>The primary Mn-Mn σ-bonding orbital is composed of two d<sub>z2</sub> orbitals, represented by the HOMO-9.
]
Other large contributions made in this area were by ] using ] en route to his 1999 ].<ref>{{Citation |last=Zewail |first=Ahmed H. |title=Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers (Nobel Lecture) |url=http://dx.doi.org/10.1002/3527600183.ch1 |work=Femtochemistry |year=2001 |pages=1–85 |access-date=2023-03-13 |place=Weinheim, FRG |publisher=Wiley-VCH Verlag GmbH|doi=10.1002/3527600183.ch1 |isbn=352730259X }}</ref> His discoveries elucidated much about the time scales and energies associated with the ] of Mn<sub>2</sub>(CO)<sub>10</sub>, as well as the Mn-Mn and Mn-C bond cleavage events.<ref>{{Cite journal |last1=Kyu Kim |first1=Sang |last2=Pedersen |first2=Soren |last3=Zewail |first3=Ahmed H. |date=1995-02-24 |title=Femtochemistry of organometallics: dynamics of metal-metal and metal-ligand bond cleavage in M2(CO)10 |url=https://dx.doi.org/10.1016/0009-2614%2895%2900050-E |journal=Chemical Physics Letters |language=en |volume=233 |issue=5 |pages=500–508 |doi=10.1016/0009-2614(95)00050-E |bibcode=1995CPL...233..500K |issn=0009-2614}}</ref>

==Reactivity==
Mn<sub>2</sub>(CO)<sub>10</sub> is air stable as a crystalline solid, but solutions require ] techniques. Mn<sub>2</sub>(CO)<sub>10</sub> is chemically active at both the Mn-Mn and Mn-CO bonds due to low, and surprisingly similar, ] of ~36 kcal/mol (151 kJ/mol)<ref>{{Cite journal |last1=Hughey |first1=Joseph L. |last2=Anderson |first2=Craig P. |last3=Meyer |first3=Thomas J. |date=1977-02-01 |title=Photochemistry of Mn2(CO)10 |url=https://www.sciencedirect.com/science/article/pii/S0022328X00894553 |journal=Journal of Organometallic Chemistry |language=en |volume=125 |issue=2 |pages=C49–C52 |doi=10.1016/S0022-328X(00)89455-3 |issn=0022-328X}}</ref> and ~38 kcal/mol (160 kJ/mol),<ref>{{Cite journal |last=Smith |first=G. P. |date=1988-01-01 |title=Gas-phase first bond dissociation energies in transition-metal carbonyls |url=https://www.sciencedirect.com/science/article/pii/S0277538700817854 |journal=Polyhedron |language=en |volume=7 |issue=16 |pages=1605–1608 |doi=10.1016/S0277-5387(00)81785-4 |issn=0277-5387}}</ref> respectively. For this reason, reactivity can happen at either site of the molecule, sometimes selectively. Examples of each are given.

=== Mn-Mn bond cleavage reactions ===
The Mn-Mn bond is sensitive to both oxidation and reduction, producing two equivalents of the corresponding Mn(I) and Mn(-I) species, respectively. Both of the potential resultant species can be derived further. ] neutral cleavage is possible both thermally and ], producing two equivalents of the Mn(0) radical. Examples of each are given below.

==== Oxidative cleavage ====
Selective mono-oxidation of the Mn-Mn bond is most often done via addition of classical metal oxidants (e.g. ], ], etc) or weak homonuclear ] of the form X-X (X is ] or ] element).<ref>{{Cite journal |last1=Davidson |first1=J. L. |last2=Sharp |first2=D. W. A. |date=1973-01-01 |title=Metal perfluoro-alkyl- and -aryl-thiolates. Part II. Molybdenum, tungsten, manganese, iron, and nickel derivatives |url=https://pubs.rsc.org/en/content/articlelanding/1973/dt/dt9730001957 |journal=Journal of the Chemical Society, Dalton Transactions |language=en |issue=19 |pages=1957–1960 |doi=10.1039/DT9730001957 |issn=1364-5447}}</ref><ref>{{Cite journal |last1=Chaudhuri |first1=M. K. |last2=Haas |first2=A. |last3=Wensky |first3=A. |date=1976-08-24 |title=Photoinduced reactions of (CF3S)3N and CF3SeSeCF3 with Mn2(CO)10 and Fe(CO)5 |url=https://www.sciencedirect.com/science/article/pii/S0022328X00944693 |journal=Journal of Organometallic Chemistry |language=en |volume=116 |issue=3 |pages=323–326 |doi=10.1016/S0022-328X(00)94469-3 |issn=0022-328X}}</ref><ref>{{Cite journal |last1=Arsenault |first1=Clément |last2=Bougeard |first2=Peter |last3=Sayer |first3=Brian G. |last4=Yeroushalmi |first4=Shahin |last5=McGlinchey |first5=Michael J. |date=1984-04-17 |title=tricarbonylmanganese(I): Synthesis, spectroscopy and reactivity |url=https://dx.doi.org/10.1016/0022-328X%2884%2980092-3 |journal=Journal of Organometallic Chemistry |language=en |volume=265 |issue=3 |pages=283–290 |doi=10.1016/0022-328X(84)80092-3 |issn=0022-328X}}</ref><ref>{{Cite journal |last1=Schmidt |first1=Steven P. |last2=Trogler |first2=William C. |last3=Basolo |first3=Fred |date=March 1984 |title=Mechanism of halogenation of dimanganese, manganese-rhenium, and dirhenium decacarbonyls |url=https://pubs.acs.org/doi/abs/10.1021/ja00317a023 |journal=Journal of the American Chemical Society |language=en |volume=106 |issue=5 |pages=1308–1313 |doi=10.1021/ja00317a023 |issn=0002-7863}}</ref><ref>{{Cite journal |last1=Hernández |first1=José G. |last2=Butler |first2=Ian S. |last3=Friščić |first3=Tomislav |date=2014-06-16 |title=Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions |url=http://xlink.rsc.org/?DOI=C4SC01252F |journal=Chemical Science |language=en |volume=5 |issue=9 |pages=3576 |doi=10.1039/C4SC01252F |issn=2041-6520}}</ref> These reactions yield the <sup>+</sup> ] with a bound weakly coordinating anion, or the Mn(CO)<sub>5</sub>X complex. The general reaction schemes for each are seen as balanced equations below:<chem display="block">Mn2(CO)10 + 2 M^{n}X_{n} -> 2Mn(CO)5X + 2M^{(n-1)}X_{(n-1)}</chem>or for two-electron oxidants<chem display="block">Mn2(CO)10 + M^{n}X_{n} -> 2Mn(CO)5X + M^{(n-2)}X_{(n-2)}</chem>and<chem display="block">Mn2(CO)10 + RE-ER -> 2Mn(CO)5(ER)</chem>for E = ], ], ], ]<chem display="block">Mn2(CO)10 + X-X -> 2Mn(CO)5X</chem>for X = ], Cl, Br, I

==== Reductive cleavage ====
Reductive cleavage is almost always done with sodium metal,<ref>{{Cite journal |last1=Warnock |first1=Garry F. P. |last2=Moodie |first2=Lyn Cammarano |last3=Ellis |first3=John E. |date=March 1989 |title=Highly reduced organometallics. Part 25. Reactions of trisodium tetracarbonylmetalates(3-) of manganese and rhenium with Broensted acids and other electrophiles. Synthesis of H2M(CO)4- (M = Mn and Re), (CH3)2Re(CO)4-, the first dialkyl derivative of a carbonylmetalate trianion, and related anionic species |url=https://pubs.acs.org/doi/abs/10.1021/ja00188a029 |journal=Journal of the American Chemical Society |language=en |volume=111 |issue=6 |pages=2131–2141 |doi=10.1021/ja00188a029 |issn=0002-7863}}</ref><ref>{{Cite journal |last1=Kuchynka |first1=D. J. |last2=Kochi |first2=J. K. |date=March 1989 |title=Equilibrium of 17-electron and 19-electron organometallic radicals derived from carbonylmanganese anions and cations |url=https://pubs.acs.org/doi/abs/10.1021/ic00304a012 |journal=Inorganic Chemistry |language=en |volume=28 |issue=5 |pages=855–863 |doi=10.1021/ic00304a012 |issn=0020-1669}}</ref> yielding the <sup>−</sup> anion with the sodium ]. The balanced general reactions are given below:<chem display="block">Mn2(CO)10 + 2 Na^{0} -> 2Na</chem>The resultant manganate anion is a potent ], which can be ] to give the manganese hydride,<ref name=":1">{{Cite journal |last1=Nappa |first1=Mario J. |last2=Santi |first2=Roberto |last3=Halpern |first3=Jack |date=January 1985 |title=Mechanisms of the carbon-hydrogen bond-forming binuclear reductive elimination reactions of benzyl- and hydridomanganese carbonyls |url=https://pubs.acs.org/doi/abs/10.1021/om00120a007 |journal=Organometallics |language=en |volume=4 |issue=1 |pages=34–41 |doi=10.1021/om00120a007 |issn=0276-7333}}</ref><ref>{{Cite journal |last1=Wassink |first1=Berend |last2=Thomas |first2=Marian J. |last3=Wright |first3=Steven C. |last4=Gillis |first4=Daniel J. |last5=Baird |first5=Michael C. |date=April 1987 |title=Mechanisms of the hydrometalation (insertion) and stoichiometric hydrogenation reactions of conjugated dienes effected by manganese pentacarbonyl hydride: processes involving the radical pair mechanism |url=https://pubs.acs.org/doi/abs/10.1021/ja00241a016 |journal=Journal of the American Chemical Society |language=en |volume=109 |issue=7 |pages=1995–2002 |doi=10.1021/ja00241a016 |issn=0002-7863}}</ref> or ] with ]<ref>{{Cite journal |last1=Casey |first1=Charles P. |last2=Scheck |first2=Daniel M. |date=April 1980 |title=Mechanism of reductive elimination of acetophenone from Me4+- |url=https://pubs.acs.org/doi/abs/10.1021/ja00528a034 |journal=Journal of the American Chemical Society |language=en |volume=102 |issue=8 |pages=2728–2731 |doi=10.1021/ja00528a034 |issn=0002-7863}}</ref><ref>{{Cite journal |last1=Benson |first1=Ian B. |last2=Hunt |first2=James |last3=Knox |first3=Selby A. R. |last4=Oliphant |first4=Valerie |date=1978 |title=Organosulphur–transition-metal chemistry. Part 1. Reactions of carbon disulphide with metal carbonyl anions |url=http://xlink.rsc.org/?DOI=DT9780001240 |journal=J. Chem. Soc., Dalton Trans. |language=en |issue=10 |pages=1240–1246 |doi=10.1039/DT9780001240 |issn=0300-9246}}</ref><ref name=":1" /> to give a large swath of organomanganese(I) complexes.

==== Redox-neutral cleavage ====
], usually via light,<ref>{{Cite journal |last1=Herrick |first1=Richard S. |last2=Brown |first2=Theodore L. |date=December 1984 |title=Flash photolytic investigation of photoinduced carbon monoxide dissociation from dinuclear manganese carbonyl compounds |url=https://pubs.acs.org/doi/abs/10.1021/ic00194a028 |journal=Inorganic Chemistry |language=en |volume=23 |issue=26 |pages=4550–4553 |doi=10.1021/ic00194a028 |issn=0020-1669}}</ref> but sometimes heat,<ref>{{Cite journal |last1=Wegman |first1=R. W. |last2=Olsen |first2=R. J. |last3=Gard |first3=D. R. |last4=Faulkner |first4=L. R. |last5=Brown |first5=Theodore L. |date=October 1981 |title=Flash photolysis study of the metal-metal bond homolysis in dimanganese decacarbonyl and dirhenium decacarbonyl |url=https://pubs.acs.org/doi/abs/10.1021/ja00410a017 |journal=Journal of the American Chemical Society |language=en |volume=103 |issue=20 |pages=6089–6092 |doi=10.1021/ja00410a017 |issn=0002-7863}}</ref> gives the Mn(0) metalloradical, which can react with itself to reform Mn<sub>2</sub>(CO)<sub>10</sub>, or combine with other radical species that usually result in formal oxidation to Mn(I). This reactivity is comparable to that of organic, carbon-based radicals via the isolobal analogy. The homolytic cleavage is given by:<chem display="block">Mn2(CO)10 + h\nu -> 2^{.}</chem>The use of the produced radical species, *, has found several applications as a ] for various organic methodologies<ref>{{Cite journal |last1=Gilbert |first1=Bruce C. |last2=Kalz |first2=Wilhelm |last3=Lindsay |first3=Chris I. |last4=McGrail |first4=P. Terry |last5=Parsons |first5=Andrew F. |last6=Whittaker |first6=David T. E. |date=1999-08-13 |title=Radical cyclisations promoted by dimanganese decacarbonyl: A new and flexible approach to 5-membered N-heterocycles |url=https://www.sciencedirect.com/science/article/pii/S004040399901271X |journal=Tetrahedron Letters |language=en |volume=40 |issue=33 |pages=6095–6098 |doi=10.1016/S0040-4039(99)01271-X |issn=0040-4039}}</ref><ref>{{Cite journal |last1=Gilbert |first1=Bruce C. |last2=Parsons |first2=Andrew F. |date=2002-02-25 |title=The use of free radical initiators bearing metal–metal, metal–hydrogen and non-metal–hydrogen bonds in synthesis |url=https://pubs.rsc.org/en/content/articlelanding/2002/p2/b102044g |journal=Journal of the Chemical Society, Perkin Transactions 2 |language=en |issue=3 |pages=367–387 |doi=10.1039/B102044G |issn=1364-5471}}</ref><ref>{{Cite journal |last1=Fukuyama |first1=Takahide |last2=Nishitani |first2=Satoshi |last3=Inouye |first3=Takaya |last4=Morimoto |first4=Keisuke |last5=Ryu |first5=Ilhyong |date=2006-03-01 |title=Effective Acceleration of Atom Transfer Carbonylation of Alkyl Iodides by Metal Complexes. Application to the Synthesis of the Hinokinin Precursor and Dihydrocapsaicin |url=https://pubs.acs.org/doi/10.1021/ol060123%2B |journal=Organic Letters |language=en |volume=8 |issue=7 |pages=1383–1386 |doi=10.1021/ol060123+ |pmid=16562897 |issn=1523-7060}}</ref> and ] reactions.<ref>{{Cite journal |last1=Ciftci |first1=Mustafa |last2=Tasdelen |first2=Mehmet Atilla |last3=Yagci |first3=Yusuf |date=2013-12-11 |title=Sunlight induced atom transfer radical polymerization by using dimanganese decacarbonyl |url=https://pubs.rsc.org/en/content/articlelanding/2014/py/c3py01009k |journal=Polymer Chemistry |language=en |volume=5 |issue=2 |pages=600–606 |doi=10.1039/C3PY01009K |issn=1759-9962}}</ref><ref>{{Cite journal |last1=Gilbert |first1=Bruce C. |last2=Harrison |first2=Richard J. |last3=Lindsay |first3=Chris I. |last4=McGrail |first4=P. Terry |last5=Parsons |first5=Andrew F. |last6=Southward |first6=Richard |last7=Irvine |first7=Derek J. |date=2003-12-01 |title=Polymerization of Methyl Methacrylate Using Dimanganese Decacarbonyl in the Presence of Organohalides |url=https://pubs.acs.org/doi/10.1021/ma034712w |journal=Macromolecules |language=en |volume=36 |issue=24 |pages=9020–9023 |doi=10.1021/ma034712w |bibcode=2003MaMol..36.9020G |issn=0024-9297}}</ref><ref>{{Cite journal |last1=Ciftci |first1=Mustafa |last2=Norsic |first2=Sébastien |last3=Boisson |first3=Christophe |last4=D'Agosto |first4=Franck |last5=Yagci |first5=Yusuf |date=May 2015 |title=Synthesis of Block Copolymers Based on Polyethylene by Thermally Induced Controlled Radical Polymerization Using Mn 2 (CO) 10 |url=https://onlinelibrary.wiley.com/doi/10.1002/macp.201500016 |journal=Macromolecular Chemistry and Physics |language=en |volume=216 |issue=9 |pages=958–963 |doi=10.1002/macp.201500016}}</ref>

=== Ligand substitution reactions ===
] substitution reactions that do not disrupt the Mn-Mn bonding is done by using strongly sigma donating L-type ligands that can outcompete CO without participating in redox reactivity.<ref>{{Cite journal |last1=Coville |first1=N. J. |last2=Stolzenberg |first2=A. M. |last3=Muetterties |first3=E. L. |date=April 1983 |title=Mechanism of ligand substitution in dimanganese decacarbonyl |url=https://pubs.acs.org/doi/abs/10.1021/ja00346a079 |journal=Journal of the American Chemical Society |language=en |volume=105 |issue=8 |pages=2499–2500 |doi=10.1021/ja00346a079 |issn=0002-7863}}</ref> This requirement usually necessitates ]s<ref>{{Cite journal |last1=Herrinton |first1=Thomas |last2=Brown |first2=Theodore |date=October 1, 1985 |title=Substitution of manganese pentacarbonyl is associative |url=https://pubs.acs.org/doi/10.1021/ja00306a016 |journal=Journal of the American Chemical Society |volume=107 |issue=20 |pages=5700–5703|doi=10.1021/ja00306a016 }}</ref><ref>{{Cite journal |last1=Reimann |first1=Rolf H. |last2=Singleton |first2=Eric |date=1976-01-01 |title=Reactions of metal carbonyls. Part 7. Substitution reactions of decacarbonyldimanganese with tertiary phosphorus and arsenic ligands |url=https://pubs.rsc.org/en/content/articlelanding/1976/dt/dt9760002109 |journal=Journal of the Chemical Society, Dalton Transactions |language=en |issue=20 |pages=2109–2114 |doi=10.1039/DT9760002109 |issn=1364-5447}}</ref> or ] (NHCs),<ref>{{Cite journal |last1=Fraser |first1=Roan |last2=van Sittert |first2=Cornelia G. C. E. |last3=van Rooyen |first3=Petrus H. |last4=Landman |first4=Marilé |date=2017-05-01 |title=Synthesis and structural investigation of mono- and dimetallic N-heterocyclic carbene complexes of group VII transition metals |url=https://www.sciencedirect.com/science/article/pii/S0022328X17301158 |journal=Journal of Organometallic Chemistry |language=en |volume=835 |pages=60–69 |doi=10.1016/j.jorganchem.2017.02.031 |issn=0022-328X}}</ref> with substitution occurring at the axial position according to the reactions below:
]


==Safety== ==Safety==
Mn<sub>2</sub>(CO)<sub>10</sub> is a volatile source of a metal and a source of CO. Mn<sub>2</sub>(CO)<sub>10</sub> is a ] source of a metal and a source of CO.


==References== ==References==
<references/> <references/>

{{Manganese compounds}}
{{Carbonyl complexes}}


{{DEFAULTSORT:Dimanganese Decacarbonyl}} {{DEFAULTSORT:Dimanganese Decacarbonyl}}
] ]
] ]
]

]
Dimanganese decacarbonyl: Difference between revisions Add topic