Misplaced Pages

Lithocholic acid: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively
Page 1
Page 2
← Previous editContent deleted Content addedVisualWikitext
Revision as of 12:48, 18 January 2011 editBeetstra (talk | contribs)Edit filter managers, Administrators172,081 edits Script assisted update of identifiers from ChemSpider, CommonChemistry and FDA for the Chem/Drugbox validation project - Updated: ChEMBL.← Previous edit Latest revision as of 04:32, 30 December 2024 edit undoOAbot (talk | contribs)Bots442,978 editsm Open access bot: doi updated in citation with #oabot. 
(84 intermediate revisions by 41 users not shown)
Line 1: Line 1:
{{chembox {{chembox
| Verifiedimages = changed
| verifiedrevid = 402204920
| Verifiedfields = changed
|Reference=<ref> at ]</ref>
| Watchedfields = changed
|ImageFile=Lithocholic acid acsv.svg
| verifiedrevid = 408578282
|ImageSize=200px
| Reference = <ref> at ]</ref>
|IUPACName=(4''R'')-4-phenanthren-17-yl]pentanoic acid
| ImageFile_Ref = {{chemboximage|correct|??}}
|OtherNames=Lithocholate; Lithocolic acid; 3α-Hydroxy-5β-cholan-24-oic acid; 3α-Hydroxy-5β-cholanic acid; 5β-Cholan-24-oic acid-3α-ol
| ImageFile = Lithocholic acid acsv.svg
| ImageSize =
| IUPACName = 3α-Hydroxy-5β-cholan-24-oic acid
| SystematicName = (4''R'')-4-phenanthren-1-yl]pentanoic acid
| OtherNames = Lithocholate; Lithocolic acid; 3α-Hydroxy-5β-cholanic acid; 5β-Cholan-24-oic acid-3α-ol
|Section1={{Chembox Identifiers |Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| InChI = 1/C24H40O3/c1-15(4-9-22(26)27)19-7-8-20-18-6-5-16-14-17(25)10-12-23(16,2)21(18)11-13-24(19,20)3/h15-21,25H,4-14H2,1-3H3,(H,26,27)/t15-,16-,17-,18+,19-,20+,21+,23+,24-/m1/s1
| CASNo =434-13-9
| InChIKey = SMEROWZSTRWXGI-HVATVPOCBI
| Beilstein = 3217757
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 16325
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 1478 | ChEMBL = 1478
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 9519
| EINECS = 207-099-1
| IUPHAR_ligand = 611
| KEGG = C03990
| PubChem =9903
| RTECS = FZ2275000
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 5QU0I8393U
| InChI = 1/C24H40O3/c1-15(4-9-22(26)27)19-7-8-20-18-6-5-16-14-17(25)10-12-23(16,2)21(18)11-13-24(19,20)3/h15-21,25H,4-14H2,1-3H3,(H,26,27)/t15-,16-,17-,18+,19-,20+,21+,23+,24-/m1/s1
| InChIKey = SMEROWZSTRWXGI-HVATVPOCBI
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C24H40O3/c1-15(4-9-22(26)27)19-7-8-20-18-6-5-16-14-17(25)10-12-23(16,2)21(18)11-13-24(19,20)3/h15-21,25H,4-14H2,1-3H3,(H,26,27)/t15-,16-,17-,18+,19-,20+,21+,23+,24-/m1/s1 | StdInChI = 1S/C24H40O3/c1-15(4-9-22(26)27)19-7-8-20-18-6-5-16-14-17(25)10-12-23(16,2)21(18)11-13-24(19,20)3/h15-21,25H,4-14H2,1-3H3,(H,26,27)/t15-,16-,17-,18+,19-,20+,21+,23+,24-/m1/s1
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = SMEROWZSTRWXGI-HVATVPOCSA-N | StdInChIKey = SMEROWZSTRWXGI-HVATVPOCSA-N
| SMILES = O=C(O)CC(1CC21(C)CC42CC3C(O)CC34C)C
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo=434-13-9
| PubChem=9903
| IUPHAR_ligand = 611
| SMILES = O=C(O)CC(1CC21(C)CC42CC3C(O)CC34C)C
| RTECS = FZ2275000
| EINECS = 207-099-1
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 9519
}} }}
|Section2={{Chembox Properties |Section2={{Chembox Properties
| C=24 | H=40 | O=3
| Formula=C<sub>24</sub>H<sub>40</sub>O<sub>3</sub>
| Appearance =
| MolarMass=376.57 g/mol
| Density =
| Appearance=
| MeltingPtC = 183 to 188
| Density=
| MeltingPt_notes =
| MeltingPt=183-188 °C
| BoilingPt= | BoilingPt =
| Solubility= | Solubility =
}} }}
|Section3={{Chembox Hazards |Section3={{Chembox Hazards
| MainHazards= | MainHazards =
| FlashPt= | FlashPt =
| AutoignitionPt =
| Autoignition=
| RPhrases =
| SPhrases = {{S22}} {{S24/25}}
}} }}
}} }}


'''Lithocholic acid''' (LCA) is a ] that acts as a detergent to solubilize fats for absorption. It is made from ] by bacterial action in the ]. '''Lithocholic acid''', also known as '''3α-hydroxy-5β-cholan-24-oic acid''' or '''LCA''', is a ] that acts as a detergent to solubilize fats for absorption. Bacterial action in the ] produces LCA from ] by reduction of the ] functional group at carbon-7 in the "B" ring of the ] framework.{{cn|date=March 2022}}


It has been implicated in human and experimental animal ].<ref name=Kozoni1999>{{cite journal | doi = 10.1093/carcin/21.5.999 | title = The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: Differential effect on apoptosis in the presence of a colon carcinogen | year = 2000 | last1 = Kozoni | first1 = V. | journal = Carcinogenesis | volume = 21 | issue = 5 | pages = 999–1005 | pmid = 10783324 | last2 = Tsioulias | first2 = G | last3 = Shiff | first3 = S | last4 = Rigas | first4 = B| doi-access = }}</ref><ref>Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. ''Int J Mol Sci''. 2019 Mar 11;20(5):1214. {{doi|10.3390/ijms20051214}} {{PMID|30862015}}</ref> Preliminary '']'' research suggests that LCA selectively kills ] cells, while sparing normal neuronal cells and is cytotoxic to numerous other malignant cell types at physiologically relevant concentrations.<ref>{{cite journal | pmid = 21992775 | year = 2011 | last1 = Goldberg | first1 = AA | last2 = Beach | first2 = A | last3 = Davies | first3 = GF | last4 = Harkness | first4 = TA | last5 = Leblanc | first5 = A | last6 = Titorenko | first6 = VI | title = Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells | volume = 2 | issue = 10 | pages = 761–82 | journal = Oncotarget | pmc=3248158 | doi=10.18632/oncotarget.338}}</ref>
It has been implicated in human and experimental animal carcinogenesis.<ref name=Kozoni1999>http://carcin.oxfordjournals.org/cgi/content/full/21/5/999 The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: differential effect on apoptosis in the presence of a colon carcinogen . Kozoni. 1999</ref>


] can bind to lithocholic acid and aid in its excretion in stool;<ref>{{cite journal| pmid = 8389421| year = 1993| last1 = Jenkins| first1 = DJ| last2 = Wolever| first2 = TM| last3 = Rao| first3 = AV| last4 = Hegele| first4 = RA| last5 = Mitchell| first5 = SJ| last6 = Ransom| first6 = TP| last7 = Boctor| first7 = DL| last8 = Spadafora| first8 = PJ| last9 = Jenkins| first9 = AL| last10 = Mehling| first10 = Christine| last11 = Relle| first11 = Lisa Katzman| last12 = Connelly| first12 = Philip W.| last13 = Story| first13 = Jon A.| last14 = Furumoto| first14 = Emily J.| last15 = Corey| first15 = Paul| last16 = Wursch| first16 = Pierre| title = Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholesterol| volume = 329| issue = 1| pages = 21–6| doi = 10.1056/NEJM199307013290104| journal = The New England Journal of Medicine| display-authors = 8| doi-access = free}}</ref> as such, fiber can protect against colon cancer.
] can bind to lithocholic acid and aid in its excretion in stool<ref>http://content.nejm.org/cgi/content/full/329/1/21/F2 Effect on Blood Lipids of Very High Intakes of Fiber in Diets Low in Saturated Fat and Cholesterol. 1993</ref>; as such, fiber can protect against colon cancer.


LCA (and LCA acetate and LCA propionate) can activate the ] without raising calcium levels as much as Vitamin D itself.<ref name=Makishima2008>http://www.jlr.org/content/49/4/763.short Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. Mikishima. 2008 </ref> LCA (and LCA acetate and LCA propionate) can activate the ] without raising calcium levels as much as ] itself.<ref name=Makishima2008>{{cite journal | doi = 10.1194/jlr.M700293-JLR200 | pmid = 18180267 | title = Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia | year = 2008 | last1 = Ishizawa | first1 = M. | last2 = Matsunawa | first2 = M. | last3 = Adachi | first3 = R. | last4 = Uno | first4 = S. | last5 = Ikeda | first5 = K. | last6 = Masuno | first6 = H. | last7 = Shimizu | first7 = M. | last8 = Iwasaki | first8 = K.-i. | last9 = Yamada | first9 = S. | last10 = Makishima | first10 = M. | journal = The Journal of Lipid Research | volume = 49 | issue = 4 | pages = 763–772 | display-authors = 8| doi-access = free }}</ref>


LCA binds with 20 μM affinity to the human membrane enzyme ], enhancing dimer assembly and enabling catalysis. NAPE-PLD catalyzes the release of ] and other ] (NAE) from the membrane precursor ] (NAPE). NAPE-PLD facilitates crosstalk between ] signals and lipid amide signals.<ref name="Garau">{{cite journal | vauthors = Magotti P, Bauer I, Igarashi M, Babagoli M, Marotta R, Piomelli D, Garau G | title = Structure of Human N-Acylphosphatidylethanolamine-Hydrolyzing Phospholipase D: Regulation of Fatty Acid Ethanolamide Biosynthesis by Bile Acids | journal = Structure | volume = 23 | issue = 3 | date = Dec 2014 | doi = 10.1016/j.str.2014.12.018 | pmid=25684574 | pages=598–604 | pmc=4351732}}</ref> <ref name="Kostic">{{cite journal | vauthors = Kostic M | title = Bile Acids as Enzyme Regulators | journal = Chemistry & Biology | volume = 22 | issue = 4 | date = 2015 | doi = 10.1016/j.chembiol.2015.04.007 | pages=427–428| doi-access = }}</ref><ref name="Garau G">{{cite journal | vauthors = Margheritis E, Castellani B, Magotti P, Peruzzi S, Romeo E, Natali F, Mostarda S, Gioiello A, Piomelli D, Garau G | title = Bile Acid Recognition by NAPE-PLD. | journal = ACS Chem Biol | volume = 11 | issue = 10 | date = Oct 2016 | doi = 10.1021/acschembio.6b00624 | pmid=27571266 | pages=2908–2914 | pmc=5074845}}</ref>
==References==
{{reflist}}


LCA has been reported to have anti-aging effects in yeast,<ref>{{cite journal|last2=Richard|first2=VR|last3=Kyryakov|first3=P|last4=Bourque|first4=SD|last5=Beach|first5=A|last6=Burstein|first6=MT|last7=Glebov|first7=A|last8=Koupaki|first8=O|last9=Boukh-Viner|first9=T|year=2010|title=Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast ''chronological life'' span in a TOR-independent manner, by modulating housekeeping longevity assurance processes|journal=Aging|volume=2|issue=7|pages=393–414|pmc=2933888|pmid=20622262|last1=Goldberg|first1=AA|last10=Gregg|first10=C|last11=Juneau|first11=M|last12=English|first12=A. M.|last13=Thomas|first13=D. Y.|last14=Titorenko|first14=V. I.|display-authors=8|doi=10.18632/aging.100168}}</ref><ref>{{cite journal | doi = 10.18632/oncotarget.26188 | pmid = 30405886| title = Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions| date = 2018| last1 = Arlia-Ciommo| first1 = Anthony| last2 = Leonov| first2 = Anna| last3 = Mohammad| first3 = Karamat| last4 = Beach| first4 = Adam| last5 = Richard| first5 = Vincent R.| last6 = Bourque| first6 = Simon D.| last7 = Burstein| first7 = Michelle T.| last8 = Goldberg| first8 = Alexander A.| last9 = Kyryakov| first9 = Pavlo| last10 = Gomez-Perez| first10 = Alejandra| last11 = Koupaki| first11 = Olivia| last12 = Titorenko| first12 = Vladimir I.| journal = Oncotarget| volume = 9| issue = 79| pages = 34945–34971| pmc = 6201858}}</ref><ref name=":0">{{cite journal | doi = 10.18632/aging.100578 | title = Mitochondrial membrane lipidome defines yeast longevity | date = 2013 | last1 = Beach | first1 = Adam | last2 = Richard | first2 = Vincent R. | last3 = Leonov | first3 = Anna | last4 = Burstein | first4 = Michelle T. | last5 = Bourque | first5 = Simon D. | last6 = Koupaki | first6 = Olivia | last7 = Juneau | first7 = Mylène | last8 = Feldman | first8 = Rachel | last9 = Iouk | first9 = Tatiana | last10 = Titorenko | first10 = Vladimir I. | journal = Aging | volume = 5 | issue = 7 | pages = 551–574 | pmid = 23924582 | pmc = 3765583 }}</ref> and more recently fruit flies, nematodes, and mice.<ref>Ledford, Heidi, "'', Nature, December 18, 2024 </ref> <ref>{{Cite journal |last=Qu |first=Qi |last2=Chen |first2=Yan |last3=Wang |first3=Yu |last4=Long |first4=Shating |last5=Wang |first5=Weiche |last6=Yang |first6=Heng-Ye |last7=Li |first7=Mengqi |last8=Tian |first8=Xiao |last9=Wei |first9=Xiaoyan |last10=Liu |first10=Yan-Hui |last11=Xu |first11=Shengrong |last12=Zhang |first12=Cixiong |last13=Zhu |first13=Mingxia |last14=Lam |first14=Sin Man |last15=Wu |first15=Jianfeng |date=2024-12-18 |title=Lithocholic acid phenocopies anti-ageing effects of calorie restriction |url=https://www.nature.com/articles/s41586-024-08329-5 |journal=Nature |language=en |doi=10.1038/s41586-024-08329-5 |issn=0028-0836|doi-access=free }}</ref>
==Further reading==
*


== References ==
{{reflist}}


{{Vitamin D receptor modulators}}
]
]


{{DEFAULTSORT:Lithocholic Acid}}
]
]
]
]
Lithocholic acid: Difference between revisions Add topic