Misplaced Pages

Molybdenum trioxide: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively
Page 1
Page 2
← Previous editContent deleted Content addedVisualWikitext
Revision as of 04:04, 1 June 2011 editCheMoBot (talk | contribs)Bots141,565 edits Updating {{chembox}} (changes to watched fields - updated 'UNII_Ref', 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (report [[Wikipe← Previous edit Latest revision as of 13:28, 5 August 2024 edit undoSmokefoot (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers74,619 edits Reverted 1 edit by 137.195.66.43 (talk): SpammerTags: Twinkle Undo 
(94 intermediate revisions by 61 users not shown)
Line 1: Line 1:
{{chembox {{chembox
| Watchedfields = changed |Verifiedfields=changed
|Watchedfields=changed
| verifiedrevid = 409042986
|verifiedrevid=431943482
| ImageFileL1 = Molybdän(VI)-oxid Kristallstruktur.png
|ImageFileL1=Molybdän(VI)-oxid Kristallstruktur.png
| ImageName = Molybdenum trioxide
| ImageFileR1 = Molybdenum trioxide powder.jpg |ImageName=Molybdenum trioxide
| ImageName1 = Molybdenum trioxide |ImageFileR1=Molybdenum trioxide powder.jpg
| IUPACName = Molybdenum trioxide |IUPACName=Molybdenum trioxide
| OtherNames = Molybdic anhydride<br/>]<br/>Molybdic trioxide |OtherNames=Molybdic anhydride<br/>]<br/>Molybdic trioxide<br/>Molybdenum(VI) oxide
| Section1 = {{Chembox Identifiers |Section1={{Chembox Identifiers
| CASNo = 1313-27-5 | CASNo = 1313-27-5
| CASNo_Comment = anhydrous
| CASNo_Ref = {{cascite|correct|CAS}} {{cascite}}
| CASNo_Ref = {{cascite|correct|CAS}}
| ChEBI = 30627
| ChemSpiderID = 14118
| EC_number = 215-204-7
| PubChem = 14802
| UNNumber = 3288
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 22FQ3F03YS
| StdInChI=1S/Mo.3O
| StdInChIKey = JKQOBWVOAYFWKG-UHFFFAOYSA-N
| SMILES = O=(=O)=O
}} }}
| Section2 = {{Chembox Properties |Section2={{Chembox Properties
| Mo = 1 | O = 3 | Mo=1 | O=3
| Appearance = yellow or light blue solid<ref>http://www.mallbaker.com/americas/msds/english/m7829_msds_us_default.pdf</ref> | Appearance = yellow solid
| Odor = odorless
| Density = 4.69 g/cm<sup>3</sup>, solid
| Density = 4.70 g/cm<sup>3</sup><ref name=crc>Haynes, p. 4.77</ref>
| Solubility = 0.1066 g/100 mL (18 °C) <br> 2.055 g/100 mL (70 °C)
| Solubility = 1.066 g/L (18 °C) <br> 4.90 g/L (28 °C) <br> 20.55 g/L (70 °C)
| MeltingPt = 795 °C
| BoilingPt = 1155 °C | MeltingPtC = 802
| MeltingPt_ref=<ref name=crc/>
| pKa =
| BoilingPtC = 1155
| BoilingPt_ref = (sublimes)<ref name=crc/>
| BandGap = >3 eV (])<ref name="AFMreview">{{Cite journal|last1=Balendhran|first1=Sivacarendran|last2=Walia|first2=Sumeet|last3=Nili|first3=Hussein|last4=Ou|first4=Jian Zhen|last5=Zhuiykov|first5=Serge|last6=Kaner|first6=Richard B.|last7=Sriram|first7=Sharath|last8=Bhaskaran|first8=Madhu|last9=Kalantar-zadeh|first9=Kourosh|date=2013-08-26|title=Two-Dimensional Molybdenum Trioxide and Dichalcogenides|journal=Advanced Functional Materials|volume=23|issue=32|pages=3952–3970|doi=10.1002/adfm.201300125|s2cid=95301280 }}</ref>
| pKa =
| MagSus = +3.0·10<sup>−6</sup> cm<sup>3</sup>/mol<ref>Haynes, p. 4.134</ref>
}} }}
| Section3 = {{Chembox Structure |Section3={{Chembox Structure
| Structure_ref =<ref>{{cite journal|journal=J. Appl. Crystallogr. |year=1988|volume=21|pages= 960–962|author1=Åsbrink, S.|author2=Kihlborg, L.|author3= Malinowski, M. |doi=10.1107/S0021889888008271|title=High-pressure single-crystal X-ray diffraction studies of MoO<sub>3</sub>. I. Lattice parameters up to 7.4 GPa|issue=6|doi-access=}}</ref>
| Coordination = ''see text''
| Coordination = ''see text''
| CrystalStruct = ]
| CrystalStruct = ], ]
| SpaceGroup = Pnma, No. 62
| LattConst_a = 1.402 nm
| LattConst_b = 0.37028 nm
| LattConst_c = 0.39663 nm
| LattConst_alpha =
| LattConst_beta =
| LattConst_gamma =
| LattConst_ref =
| LattConst_Comment =
| UnitCellVolume =
| UnitCellFormulas = 4
}} }}
| Section4 = {{Chembox Thermochemistry |Section4={{Chembox Thermochemistry
| Thermochemistry_ref =<ref>Haynes, p. 5.15</ref>
| DeltaHf = &minus;745.17 kJ/mol
| DeltaHf = −745.1 kJ/mol
| Entropy = 77.78 J&thinsp;K<sup>&minus;1</sup>&thinsp;mol<sup>&minus;1</sup>
| Entropy = 77.7 J&thinsp;K<sup>−1</sup>&thinsp;mol<sup>−1</sup>
| HeatCapacity = 75.0 J&thinsp;K<sup>−1</sup>&thinsp;mol<sup>−1</sup>
| DeltaGfree = -668.0 kJ/mol
}} }}
| Section7 = {{Chembox Hazards |Section7={{Chembox Hazards
| ExternalMSDS = | ExternalSDS =
| Hazards_ref=<ref>{{cite web |title=Molybdenum trioxide |url=https://pubchem.ncbi.nlm.nih.gov/compound/14802#section=Safety-and-Hazards |website=PubChem |language=en}}</ref>
| EUIndex = 042-001-00-9
| GHSPictograms = {{GHS07}}{{GHS08}}
| EUClass = ]<br/>Harmful ('''Xn''')<br/>Irritant ('''Xi''')
| GHSSignalWord = Warning
| RPhrases = {{R36/37}}, {{R40}}
| SPhrases = {{S2}}, {{S22}}, {{S36/37}} | HPhrases = {{H-phrases|319|335|351}}
| PPhrases = {{P-phrases|201|202|261|264|271|280|281|304+340|305+351+338|308+313|312|337+313|403+233|405|501}}
| NFPA-H =
| NFPA-F = | NFPA-H = 3
| NFPA-R = | NFPA-F = 0
| NFPA-O = | NFPA-R =
| FlashPt = Non-flammable | NFPA-S = OX
| FlashPt = Non-flammable
| LD50 = 125 mg.kg (rat, oral){{citation needed|date=July 2015}}<br/>2689 mg/kg (rat, oral)<ref name=IDLH/>
| LC50 = >5840 mg/m<sup>3</sup> (rat, 4 hr)<ref name=IDLH>{{IDLH|moly-mo|Molybdenum (soluble compounds, as Mo)}}</ref>
| LDLo = 120 mg Mo/kg (rat, oral)<br/>120 mg Mo/kg (guinea pig, oral)<ref name=IDLH/>
}} }}
| Section8 = {{Chembox Related |Section8={{Chembox Related
| OtherAnions = | OtherAnions =
| OtherCations = ]<br/>] | OtherCations = ]<br/>]
| OtherFunctn = ]<br/>"]" | OtherFunction = ]<br/>"]"
| Function = ] ]s | OtherFunction_label = ] ]s
| OtherCpds = ]<br/>] | OtherCompounds = ]<br/>]
}} }}
}} }}


'''Molybdenum trioxide''' is ] with the ] MoO<sub>3</sub>. This compound is produced on the largest scale of any ] compound. It occurs as the rare ] molybdite. Its chief application is as an oxidation ] and as a raw material for the production of molybdenum metal. '''Molybdenum trioxide''' describes a family of ]s with the ] MoO<sub>3</sub>(H<sub>2</sub>O)<sub>n</sub> where n = 0, 1, 2. The anhydrous compound is produced on the largest scale of any ] compound since it is the main intermediate produced when molybdenum ores are purified. The anhydrous oxide is a precursor to molybdenum metal, an important alloying agent. It is also an important industrial ].<ref name=ullmann>{{Ullmann|author=Roger F. Sebenik|display-authors=etal|title=Molybdenum and Molybdenum Compounds|year=2005|doi=10.1002/14356007.a16_655|isbn=978-3527306732}}</ref> It is a yellow solid, although impure samples can appear blue or green.


Molybdenum trioxide occurs as the rare ] ].
The ] of molybdenum in this compound is +6.


==Structure== ==Structure==
] ]
In the gas phase, three oxygen atoms are double bonded to the central molybdenum atom. In the solid state, ] MoO<sub>3</sub> is composed of layers of distorted MoO<sub>6</sub> octahedra in an orthorhombic crystal. The octahedra share edges and form chains which are cross-linked by oxygen atoms to form layers. The octahedra have one short molydenum-oxygen bond to a non-bridging oxygen.<ref>Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.</ref> In the gas phase, three oxygen atoms are bonded to the central molybdenum atom. In the solid state, ] MoO<sub>3</sub> is composed of layers of distorted MoO<sub>6</sub> octahedra in an orthorhombic crystal. The octahedra share edges and form chains which are cross-linked by oxygen atoms to form layers. The octahedra have one short molybdenum-oxygen bond to a non-bridging oxygen.<ref name=webmineral>{{Cite web|url=http://www.webmineral.com/data/Molybdite.shtml|title=Molybdite Mineral Data|website=Webmineral}}</ref><ref>Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. {{ISBN|0-19-855370-6}}.</ref> Also known is a metastable (β) form of MoO<sub>3</sub> with a ]-like structure.<ref>{{Cite journal|last=McCarron|first=E. M.|date=1986|title=β-MoO<sub>3</sub>: A Metastable Analogue of WO<sub>3</sub>|journal=J. Chem. Soc., Chem. Commun.|issue=4|pages=336–338|doi=10.1039/C39860000336}}</ref><ref name="AFMreview" />
{{clear|left}}


<br clear = left/>
==Preparation and principal reactions== ==Preparation and principal reactions==
], ] molybdenum mine, New Mexico (size: 11.0×6.7×4.1 cm).|left]]
MoO<sub>3</sub> is produced industrially by roasting ], the chief ore of molybdenum:
MoO<sub>3</sub> is produced industrially by ] the mineral ] (]), the chief ore of molybdenum:<ref name=ullmann/>
: {{chem2|2 MoS2 + 7 O2 → 2 MoO3 + 4 SO2}}
Similar procedures apply to the recovery of molybdenum from spent catalysts. The resulting trioxide can be purified by sublimation.
The laboratory synthesis of the dihydrate entails acidification of aqueous solutions of ] with ]:<ref>{{cite book|doi=10.1002/9780470132555.ch56|author1=Heynes, J. B. B. |author2=Cruywagen, J. J. |title=Inorganic Syntheses |chapter=Yellow Molybdenum(VI) Oxide Dihydrate |year= 1986| volume =24|pages=191–2|isbn=9780470132555 }}</ref>


: 2 MoS<sub>2</sub> + 7 O<sub>2</sub> 2 MoO<sub>3</sub> + 4 SO<sub>2</sub> :{{chem2|Na2MoO4 + H2O + 2 HClO4MoO3*2H2O + 2 NaClO4}}
The dihydrate loses water readily to give the monohydrate. Both are bright yellow in color. Molybdenum trioxide dissolves slightly in water to give "]". In base, it dissolves to afford the molybdate anion.

The laboratory synthesis entails the acidification of aqueous solutions of ] with ]:<ref>Heynes, J. B. B.; Cruywagen, J. J. "Yellow Molybdenum(VI) Oxide Dihydrate" Inorganic Syntheses, 1986, volume 24, pp. 191. ISBN 0-471-83441-6.</ref>

:Na<sub>2</sub>MoO<sub>4</sub> + H<sub>2</sub>O + 2 HClO<sub>4</sub> → MoO<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub> + 2 NaClO<sub>4</sub>

The dihydrate loses water readily to give the monohydrate. Both are bright yellow in color.

Molybdenum trioxide dissolves slightly in water to give "]." In base, it dissolves to afford the molybdate anion.


==Uses== ==Uses==
Molybdenum trioxide is used to manufacture molybdenum metal, which serves as an additive to steel and corrosion-resistant alloys. The relevant conversion entails treatment of MoO<sub>3</sub> with hydrogen at elevated temperatures: Molybdenum trioxide is used to manufacture molybdenum metal:
:MoO<sub>3</sub> + 3 H<sub>2</sub> → Mo + 3 H<sub>2</sub>O :MoO<sub>3</sub> + 3 H<sub>2</sub> → Mo + 3 H<sub>2</sub>O
It is also a component of the ] used in the industrial production of ] by the ] of ] and ]. Molybdenum trioxide is also a component of the ] used in the industrial production of ] by the ] of ] and ].


Because of its layered structure and the ease of the Mo(VI)/Mo(V) coupling, MoO<sub>3</sub> is of interest in electrochemical devices and displays. It has been described as "the most commonly used TMO in organic electronics applications ... it is evaporated at relatively low temperature (~400 °C)."<ref>{{cite journal |doi=10.1002/adma.201201630|title=Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications |year=2012 |last1=Meyer |first1=Jens |last2=Hamwi |first2=Sami |last3=Kröger |first3=Michael |last4=Kowalsky |first4=Wolfgang |last5=Riedl |first5=Thomas |last6=Kahn |first6=Antoine |journal=Advanced Materials |volume=24 |issue=40 |pages=5408–5427 |pmid=22945550 |bibcode=2012AdM....24.5408M |s2cid=197055498 }}</ref> It has favourable electronic and chemical properties for use as interfacing layers, p-type ] and hole transport materials in ], ] and ],<ref>{{Cite journal |last1=White |first1=Robin T. |last2=Thibau |first2=Emmanuel S. |last3=Lu |first3=Zheng-Hong |date=2016-02-16 |title=Interface Structure of MoO3 on Organic Semiconductors |journal=Scientific Reports |language=en |volume=6 |issue=1 |pages=21109 |doi=10.1038/srep21109 |issn=2045-2322 |pmc=4754744 |pmid=26880185|bibcode=2016NatSR...621109W }}</ref> especially when forming an ] to ].<ref>{{Cite journal |last1=Gong |first1=Yongshuai |last2=Dong |first2=Yiman |last3=Zhao |first3=Biao |last4=Yu |first4=Runnan |last5=Hu |first5=Siqian |last6=Tan |first6=Zhan'ao |date=2020 |title=Diverse applications of MoO 3 for high performance organic photovoltaics: fundamentals, processes and optimization strategies |url=http://xlink.rsc.org/?DOI=C9TA12005J |journal=Journal of Materials Chemistry A |language=en |volume=8 |issue=3 |pages=978–1009 |doi=10.1039/C9TA12005J |s2cid=213237371 |issn=2050-7488}}</ref>
Because of its layered structure and the ease of the Mo(VI)/Mo(V) couple, MoO<sub>3</sub> is of interest in electrochemical devices and displays.<ref>Ferreira, F. F.; Souza Cruz, T. G.; Fantini, M. C. A.; Tabacniks, M. H.; de Castro, S. C.; Morais, J.; de Siervo, A.; Landers, R.; Gorenstein, A. ''Solid State Ionics.'' '''2000''', ''136-137'', 357.</ref>


==References== ==References==
{{reflist}} {{reflist}}

==Cited sources==
*{{cite book | editor= Haynes, William M. | year = 2011 | title = CRC Handbook of Chemistry and Physics | edition = 92nd | publisher = ] | isbn = 978-1439855119| title-link = CRC Handbook of Chemistry and Physics }}


==External links== ==External links==
* {{Greenwood&Earnshaw}} * {{Greenwood&Earnshaw}}
* *
* *
* *


{{Clear}}
], Questa molybdenum mine, New Mexico. Size: 11.0 x 6.7 x 4.1 cm.]]
{{-}}
{{Molybdenum compounds}} {{Molybdenum compounds}}
{{Oxides}}
{{oxygen compounds}}


] ]
] ]

]
]
]
]
]
]
]