Misplaced Pages

:WikiProject Chemicals/Chembox validation/VerifiedDataSandbox and Raffinose: Difference between pages - Misplaced Pages

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Difference between pages)
Page 1
Page 2
Content deleted Content addedVisualWikitext
Revision as of 12:32, 6 December 2011 editBeetstra (talk | contribs)Edit filter managers, Administrators172,031 edits Saving copy of the {{chembox}} taken from revid 457022446 of page Raffinose for the Chem/Drugbox validation project (updated: 'ChEMBL').  Latest revision as of 03:20, 19 November 2024 edit Seraphimblade (talk | contribs)Edit filter managers, Administrators46,247 editsm Disease relevance: Unneeded comma 
Line 1: Line 1:
{{more citations needed|date=April 2015}}
{{ambox | text = This page contains a copy of the infobox ({{tl|chembox}}) taken from revid of page ] with values updated to verified values.}}
{{chembox {{Chembox
| Verifiedfields = changed
| verifiedrevid = 401039193
| Watchedfields = changed
| verifiedrevid = 464379815
| ImageFile = Raffinose.svg | ImageFile = Raffinose.svg
| ImageFile2 = Rafinosa-3D.png
| ImageSize = 275px | ImageSize = 275px
| IUPACName = β-<small>D</small>-Fructofuranosyl α-<small>D</small>-galactopyranosyl-(1→6)-α-<small>D</small>-glucopyranoside
| IUPACName = <small>(''2R,3R,4S,5S,6R'')-2-oxy-6-oxymethyl]<br>oxane-3,4,5-triol</small>| OtherNames = Melitose<br>Melitriose<br>Gossypose<br>α-D-Galactosylsucrose
| SystematicName = <small>(2''R'',3''R'',4''S'',5''S'',6''R'')-2-{oxy}-6-({oxy}methyl)oxane-3,4,5-triol</small>
| Section1 = {{Chembox Identifiers
| OtherNames = rafinosa<br> D-(+)-Raffinose<br> D-Raffinose<br> D-raffinose pentahydrate<br> Gossypose<br> Melitose<br> Melitriose<br> NSC 170228<br> NSC 2025<br> 6G-α-D-galactosylsucrose;<br> β-D-fructofuranosyl-O-α-D-glucopyranosyl-(1→6)-α-D-galactopyranoside hydrate(1:5)
| Abbreviations =

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
|Section1={{Chembox Identifiers
| ChemSpiderID = 388379
| CASNo_Ref = {{cascite|correct|CAS}}
| ChEMBL = <!-- blanked - oldvalue: 223844 -->
| CASNo = 512-69-6
| InChI = 1S/C18H32O16/c19-1-5-8(22)11(25)13(27)16(31-5)30-3-7-9(23)12(26)14(28)17(32-7)34-18(4-21)15(29)10(24)6(2-20)33-18/h5-17,19-29H,1-4H2/t5-,6-,7-,8+,9-,10-,11+,12+,13-,14-,15+,16+,17-,18+/m1/s1
| index2_label = (pentahydrate)
| InChIKey = MUPFEKGTMRGPLJ-ZQSKZDJDBO
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} | CASNo2_Ref = {{cascite|correct|ECHA}}
| CASNo2 = 17629-30-0
| StdInChI = 1S/C18H32O16/c19-1-5-8(22)11(25)13(27)16(31-5)30-3-7-9(23)12(26)14(28)17(32-7)34-18(4-21)15(29)10(24)6(2-20)33-18/h5-17,19-29H,1-4H2/t5-,6-,7-,8+,9-,10-,11+,12+,13-,14-,15+,16+,17-,18+/m1/s1
| Abbreviations =
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| ChEBI_Ref = {{ebicite|correct|EBI}}
| StdInChIKey = MUPFEKGTMRGPLJ-ZQSKZDJDSA-N
| ChEBI = 16634
| InChIKey1 = MUPFEKGTMRGPLJ-ZQSKZDJDSA-N
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| CASNo = 512-69-6
| ChemSpiderID = 388379
| CASOther = <br>{{CASREF|CAS=7629-30-0}} (pentahydrate)
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| EINECS =
| PubChem = 439242 | ChEMBL = 603717
| UNII = N5O3QU595M | KEGG = C00492
| EC_number = 208-146-9
| SMILES = C(1((((O1)OC2((((O2)O3((((O3)CO)O)O)CO)O)O)O)O)O)O)O
| EC_number_Comment = {{cascite|correct|ECHA}}
| InChI =
| EC_number2 = 605-771-2
| RTECS =
| PubChem = 439242
| MeSHName =
| UNII_Ref = {{fdacite|correct|FDA}}
| ChEBI = 16634
| KEGG = | UNII = N5O3QU595M
| RTECS =
| ATCCode_prefix =
| MeSHName =
| ATCCode_suffix =
| InChI = 1S/C18H32O16/c19-1-5-8(22)11(25)13(27)16(31-5)30-3-7-9(23)12(26)14(28)17(32-7)34-18(4-21)15(29)10(24)6(2-20)33-18/h5-17,19-29H,1-4H2/t5-,6-,7-,8+,9-,10-,11+,12+,13-,14-,15+,16+,17-,18+/m1/s1
| ATC_Supplemental =}}
| InChIKey = MUPFEKGTMRGPLJ-ZQSKZDJDBO
| Section2 = {{Chembox Properties
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| Formula = C<sub>18</sub>H<sub>32</sub>O<sub>16</sub>
| StdInChI = 1S/C18H32O16/c19-1-5-8(22)11(25)13(27)16(31-5)30-3-7-9(23)12(26)14(28)17(32-7)34-18(4-21)15(29)10(24)6(2-20)33-18/h5-17,19-29H,1-4H2/t5-,6-,7-,8+,9-,10-,11+,12+,13-,14-,15+,16+,17-,18+/m1/s1
| MolarMass = 504.42 g/mol
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| ExactMass = 504.169035
| StdInChIKey = MUPFEKGTMRGPLJ-ZQSKZDJDSA-N
| Appearance =
| InChIKey1 = MUPFEKGTMRGPLJ-ZQSKZDJDSA-N
| Density =
| SMILES = C(1((((O1)OC2((((O2)O3((((O3)CO)O)O)CO)O)O)O)O)O)O)O
| MeltingPt =
}}
| Melting_notes =

| BoilingPt =
|Section2={{Chembox Properties
| Boiling_notes =
| Formula = C<sub>18</sub>H<sub>32</sub>O<sub>16</sub>
| Solubility =
| MolarMass = 594.5 g/mol (pentahydrate)
| SolubleOther =
| Solvent = | Appearance =
| pKa = | Density =
| pKb = }} | MeltingPt = 118 °C
| MeltingPt_notes =
| Section7 = {{Chembox Hazards
| EUClass = | BoilingPt =
| EUIndex = | BoilingPt_notes =
| MainHazards = | Solubility = 203 g/L
| NFPA-H = | SolubleOther =
| NFPA-F = | Solvent =
| NFPA-R = | pKa =
| NFPA-O = | pKb =
}}
| RPhrases =

| SPhrases =
|Section7={{Chembox Hazards
| RSPhrases =
| MainHazards =
| NFPA-H =
| NFPA-F =
| NFPA-R =
| NFPA-S =
| HPhrases =
| PPhrases =
| GHS_ref =
| FlashPt = | FlashPt =
| Autoignition = | AutoignitionPt =
| ExploLimits = | ExploLimits =
| PEL = }} | PEL =
}}
}} }}

'''Raffinose''' is a ] composed of ], ], and ]. It can be found in ]s, ], ]s, ], ], other ], and whole ]s. Raffinose can be ] to ] and ] by the enzyme ] (α-GAL), an enzyme synthesized by bacteria found in the large intestine. α-GAL also hydrolyzes other ] such as ], ], and ], if present. In plants, raffinose plays a significant role in stress responses, particularly temperature sensitivity, seed vigour, resistance to pathogens, and desiccation.

== Chemical properties ==
The raffinose family of ]s (RFOs) are α-galactosyl derivatives of ], the most common being the ] raffinose, the ] ], and the pentasaccharide verbascose. RFOs are almost ubiquitous across the ] kingdom, being found in a large variety of seeds from many different families. They rank second only to sucrose in abundance as ].<ref>{{Citation |last=Pontis |first=Horacio G. |title=Chapter 8 - Case Study: Raffinose |date=2017-01-01 |work=Methods for Analysis of Carbohydrate Metabolism in Photosynthetic Organisms |pages=111–120 |editor-last=Pontis |editor-first=Horacio G. |url=https://www.sciencedirect.com/science/article/pii/B9780128033968000089 |access-date=2024-04-15 |place=Boston |publisher=Academic Press |doi=10.1016/b978-0-12-803396-8.00008-9 |isbn=978-0-12-803396-8}}</ref>

Raffinose typically crystallises as a pentahydrate white crystalline powder.<ref>{{Cite journal |last1=Kawasaki |first1=T. |last2=Takahashi |first2=M. |last3=Kiyanagi |first3=R. |last4=Ohhara |first4=T. |date=2022-12-01 |title=Rearrangement of hydrogen bonds in dehydrated raffinose tetrahydrate: a time-of-flight neutron diffraction study |url=https://journals.iucr.org/c/issues/2022/12/00/wv3010/ |journal=Acta Crystallographica Section C: Structural Chemistry |language=en |volume=78 |issue=12 |pages=743–748 |doi=10.1107/S2053229622010828 |pmid=36468557 |s2cid=253698466 |issn=2053-2296}}</ref> It is odorless and has a sweet taste approximately 10% that of sucrose.<ref name=":0">{{Cite web|url=https://www.chemicalbook.com/ChemicalProductProperty_EN_CB2230061.htm#targetText=Chemical%20Properties,approximately%2010%25%20that%20of%20sucrose.|title=D(+)-Raffinose pentahydrate {{!}} 17629-30-0|website=www.chemicalbook.com|access-date=2019-08-19}}</ref>

== Biochemical properties ==

=== Energy source ===
It is non-digestible in humans and other ] animals (]s and ]) who do not possess the ] to break down RFOs. These oligosaccharides pass undigested through the stomach and small intestine. In the large intestine, they are ] by ] that do possess the α-GAL enzyme and make short-chain fatty acids (SCFA)(acetic, propionic, butyric acids), as well as the ] commonly associated with eating beans and other vegetables. These SCFAs have been recently found to impart a number of health benefits.{{cn|date=November 2024}} α-GAL is present in digestive aids such as the product ].<ref>{{Cite journal |last1=Ganiats |first1=T. G. |last2=Norcross |first2=W. A. |last3=Halverson |first3=A. L. |last4=Burford |first4=P. A. |last5=Palinkas |first5=L. A. |date=November 1994 |title=Does Beano prevent gas? A double-blind crossover study of oral alpha-galactosidase to treat dietary oligosaccharide intolerance |url=https://pubmed.ncbi.nlm.nih.gov/7964541/ |journal=The Journal of Family Practice |volume=39 |issue=5 |pages=441–445 |issn=0094-3509 |pmid=7964541}}</ref>

=== Plant Health ===
Cases of abiotic stress such as temperature, drought, and salinity have shown to increase RFO levels, especially raffinose, in plants. The functional role raffinose plays in abiotic stress tolerance is not well known, but its presence as a positive regulator of these stresses is established.<ref>{{Cite journal |last1=Yan |first1=Shijuan |last2=Liu |first2=Qing |last3=Li |first3=Wenyan |last4=Yan |first4=Jianbing |last5=Fernie |first5=Alisdair R. |date=2022-07-04 |title=Raffinose Family Oligosaccharides: Crucial Regulators of Plant Development and Stress Responses |journal=Critical Reviews in Plant Sciences |language=en |volume=41 |issue=4 |pages=286–303 |doi=10.1080/07352689.2022.2111756 |bibcode=2022CRvPS..41..286Y |issn=0735-2689|doi-access=free }}</ref>

Galactinol synthase (GolS) is an enzyme key in the synthesis of RFOs. Studies which modify the expression of GolS have been done to understand the role of RFOs in stress response.<ref>{{Cite journal |last1=dos Santos |first1=Tiago Benedito |last2=Vieira |first2=Luiz Gonzaga Esteves |date=2020-12-01 |title=Involvement of the galactinol synthase gene in abiotic and biotic stress responses: A review on current knowledge |url=https://www.sciencedirect.com/science/article/pii/S2352407320300391 |journal=Plant Gene |volume=24 |pages=100258 |doi=10.1016/j.plgene.2020.100258 |bibcode=2020PlGen..2400258D |issn=2352-4073}}</ref><ref>{{Cite journal |last1=Keunen |first1=Els |last2=Peshev |first2=Darin |last3=Vangronsveld |first3=Jaco |last4=Van Den Ende |first4=Wim |last5=Cuypers |first5=Ann |date=July 2013 |title=Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept |url=https://onlinelibrary.wiley.com/doi/10.1111/pce.12061 |journal=Plant, Cell & Environment |language=en |volume=36 |issue=7 |pages=1242–1255 |doi=10.1111/pce.12061 |pmid=23305614 |issn=0140-7791}}</ref> GolS has been found to induce ] signalling pathways and expression of defence-related genes, showing RFOs to have a role in pathogen resistance.

RFOs have been seen to assist in seed germination. They are used as a source of energy and carbon for germination, and protect the seed from ] during the maturation process. One proposed mechanism of RFOs working against desiccation details the hydroxyl groups replacing water to maintain hydrophilicity ion the cell, which stabilizes the membrane structure and macromolecules needed for cellular function. Another mechanism, called "vitrification", has the cell taking on a highly viscous form, like that of a plastic solid. This maintains cellular stability and hydrogen bonding in the cell, and prevents cellular collapse.<ref>{{Cite journal |last1=Salvi |first1=Prafull |last2=Varshney |first2=Vishal |last3=Majee |first3=Manoj |date=October 2022 |title=Raffinose family oligosaccharides (RFOs): role in seed vigor and longevity |url=https://doi.org/10.1042/BSR20220198 |journal=Bioscience Reports |volume=42 |issue=10 |doi=10.1042/bsr20220198 |issn=0144-8463 |pmc=9547172 |pmid=36149314}}</ref>

In many plants, RFOs have been seen to act as an alternative to sucrose for sugar storage and transport.<ref>{{Cite journal |last1=Kanwal |first1=Freeha |last2=Ren |first2=Dingxin |last3=Kanwal |first3=Wajiha |last4=Ding |first4=Mengying |last5=Su |first5=Junqing |last6=Shang |first6=Xiaoya |date=2023-02-16 |title=The potential role of nondigestible Raffinose family oligosaccharides as prebiotics |url=https://doi.org/10.1093/glycob/cwad015 |journal=Glycobiology |volume=33 |issue=4 |pages=274–288 |doi=10.1093/glycob/cwad015 |pmid=36795047 |issn=1460-2423}}</ref>

== Disease relevance ==
Research has shown that the differential ability to utilize raffinose by strains of the bacteria '']'' impacts their ability to cause disease and the nature of the disease.<ref>{{Cite journal|last1=Minhas|first1=Vikrant|last2=Harvey|first2=Richard M.|last3=McAllister|first3=Lauren J.|last4=Seemann|first4=Torsten|last5=Syme|first5=Anna E.|last6=Baines|first6=Sarah L.|last7=Paton|first7=James C.|last8=Trappetti|first8=Claudia|date=2019-01-15|editor-last=McDaniel|editor-first=Larry S.|title=Capacity To Utilize Raffinose Dictates Pneumococcal Disease Phenotype|journal=mBio|language=en|volume=10|issue=1|doi=10.1128/mBio.02596-18|pmid=30647157 |pmc=6336424 |issn=2150-7511|doi-access=free}}</ref>

== Uses ==
Procedures concerning cryopreservation have used raffinose to provide ] for cell desiccation prior to freezing.<ref>{{cite journal|author=Storey B., Noiles, E., Thompson, K.|year=1998|title=Comparison of Glycerol, Other Polyols, Trehalose, and Raffinose to Provide a Defined Cryoprotectant Medium for Mouse Sperm Cryopreservation|journal=Cryobiology|volume=37|issue=1|pages=46–58|doi=10.1006/cryo.1998.2097|pmid=9698429|doi-access=free}}</ref> Either raffinose or ] is used as a base substance for ].

Raffinose is also used in:

* ] and cosmetics<ref>{{Cite journal |last1=Na |first1=Tae-Young |last2=Kim |first2=Gyeong-Hwan |last3=Oh |first3=Hyeon-Jeong |last4=Lee |first4=Min-Ho |last5=Han |first5=Yong-Hyun |last6=Kim |first6=Ki Taek |last7=Kim |first7=Ji-Su |last8=Kim |first8=Dae-Duk |last9=Lee |first9=Mi-Ock |date=2017-03-07 |title=The trisaccharide raffinose modulates epidermal differentiation through activation of liver X receptor |journal=Scientific Reports |language=en |volume=7 |issue=1 |pages=43823 |doi=10.1038/srep43823 |issn=2045-2322 |pmc=5339792 |pmid=28266648|bibcode=2017NatSR...743823N }}</ref>
* prebiotics (it promotes growth of ] and bifidobacteria)<ref>{{Cite journal |last1=Zartl |first1=Barbara |last2=Silberbauer |first2=Karina |last3=Loeppert |first3=Renate |last4=Viernstein |first4=Helmut |last5=Praznik |first5=Werner |last6=Mueller |first6=Monika |date=2018-03-21 |title=Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics |url=https://pubs.rsc.org/en/content/articlelanding/2018/fo/c7fo01887h |journal=Food & Function |language=en |volume=9 |issue=3 |pages=1638–1646 |doi=10.1039/C7FO01887H |pmid=29465736 |issn=2042-650X}}</ref><ref>{{Cite journal |last=Anggraeni |first=A A |date=2022-02-01 |title=Mini-Review: The potential of raffinose as a prebiotic |journal=IOP Conference Series: Earth and Environmental Science |volume=980 |issue=1 |pages=012033 |doi=10.1088/1755-1315/980/1/012033 |bibcode=2022E&ES..980a2033A |issn=1755-1307|doi-access=free }}</ref>
* food or drinks additive
* chiral stationary phase in ]<ref>{{Cite journal |last1=Qiu |first1=Hongdeng |last2=Liang |first2=Xiaojing |last3=Sun |first3=Min |last4=Jiang |first4=Shengxiang |date=2011-04-01 |title=Development of silica-based stationary phases for high-performance liquid chromatography |url=https://doi.org/10.1007/s00216-010-4611-x |journal=Analytical and Bioanalytical Chemistry |language=en |volume=399 |issue=10 |pages=3307–3322 |doi=10.1007/s00216-010-4611-x |pmid=21221544 |issn=1618-2650}}</ref>

==See also==
* ]
* ]

== Further reading ==

*

==References==
{{Reflist}}

{{Carbohydrates}}

]