Misplaced Pages

Triruthenium dodecacarbonyl: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively
Page 1
Page 2
← Previous editContent deleted Content addedVisualWikitext
Revision as of 01:50, 20 September 2010 editNirmos (talk | contribs)Extended confirmed users3,574 editsm Removed one redundant category.← Previous edit Latest revision as of 20:27, 16 November 2024 edit undoSmokefoot (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers74,600 edits Reactions: ref 
(56 intermediate revisions by 36 users not shown)
Line 1: Line 1:
{{chembox {{chembox
| Watchedfields = changed
| verifiedrevid = 268754270 | verifiedrevid = 428796625
| Name = Triruthenium dodecacarbonyl | Name = Triruthenium dodecacarbonyl
| ImageFile = Ru3(CO)12.png
| ImageFile = Trirutheniumdodecacarbonyl.svg
| ImageSize = 200px
| ImageSize =
| ImageFile1 = Triruthenium-dodecacarbonyl-from-xtal-3D-balls.png | ImageFile1 = Triruthenium-dodecacarbonyl-from-xtal-3D-balls.png
| IUPACName = ''cyclo''-tris(tetracarbonylruthenium)<br/>(3 ''Ru''—''Ru'')
| ImageFile2 = FreshRu3(CO)12.jpg
| OtherNames = Ruthenium carbonyl
| ImageSize2 = 244
| Section1 = {{Chembox Identifiers
| IUPACName = ''cyclo''-tris(tetracarbonylruthenium)<wbr/>(3 ''Ru''—''Ru'')
| CASNo = 15243-33-1
| OtherNames = Ruthenium carbonyl
| CASNo_Ref = {{cascite}}
| Section1 = {{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 15243-33-1
| ChemSpiderID = 24589240
| EC_number = 239-287-4
| PubChem = 6096991
| StdInChI=1S/12CO.3Ru/c12*1-2;;;
| StdInChIKey = NQZFAUXPNWSLBI-UHFFFAOYSA-N
| SMILES = 1(C#)(C#)(C#)(C#)(C#)(C#)(C#)(C#)1(C#)(C#)(C#)(C#)
}} }}
| Section2 = {{Chembox Properties | Section2 = {{Chembox Properties
| Formula = C<sub>12</sub>O<sub>12</sub>Ru<sub>3</sub> | Formula = C<sub>12</sub>O<sub>12</sub>Ru<sub>3</sub>
| MolarMass = 639.33 g/mol | MolarMass = 639.33 g/mol
| Appearance = orange solid | Appearance = orange solid
| Density = 2.48 g/cm<sup>3</sup> | Density = 2.48 g/cm<sup>3</sup>
| Solubility = insoluble | Solubility = insoluble
| SolubleOther = soluble | SolubleOther = soluble
| Solvent = organic solvents | Solvent = organic solvents
| MeltingPt = 224 °C | MeltingPtC = 224
| BoilingPt = sublimes in vacuum | BoilingPt = sublimes in vacuum
}} }}
| Section3 = {{Chembox Structure | Section3 = {{Chembox Structure
| CrystalStruct = | CrystalStruct =
| MolShape = ''D<sub>3h</sub>'' cluster | MolShape = ''D<sub>3h</sub>'' cluster
| Dipole = 0 ] | Dipole = 0 ]
}} }}
| Section7 = {{Chembox Hazards | Section7 = {{Chembox Hazards
| ExternalMSDS = | ExternalSDS =
| MainHazards = Toxic | MainHazards = Toxic, ] Source
| GHSPictograms = {{GHS07}}
| RPhrases =
| GHSSignalWord = Warning
| SPhrases =
| HPhrases = {{H-phrases|302|315|319|332|335}}
| PPhrases = {{P-phrases|261|264|270|271|280|301+312|302+352|304+312|304+340|305+351+338|312|321|330|332+313|337+313|362|403+233|405|501}}
}} }}
| Section8 = {{Chembox Related | Section8 = {{Chembox Related
| OtherCpds = ]<br/>] | OtherCompounds = ]<br/>]
}} }}
}} }}


Triruthenium dodecacarbonyl is the ] with the formula Ru<sub>3</sub>(CO)<sub>12</sub>. This orange-colored ] is a precursor to other ]s. '''Triruthenium dodecacarbonyl''' is the ] with the formula Ru<sub>3</sub>(CO)<sub>12</sub>. Classified as ], it is a dark orange-colored solid that is soluble in nonpolar organic solvents. The compound serves as a precursor to other ]s.


==Structure and synthesis== ==Structure and synthesis==
The cluster has ''D<sub>3h</sub>'' ], consisting of an ] of Ru atoms, each of which bears two axial and two equatorial CO ligands.<ref>Slebodnick, C.; Zhao, J.; Angel, R.; Hanson, B. E.; Song, Y.; Liu, Z.; Hemley, R. J., "High Pressure Study of Ru<sub>3</sub>(CO)<sub>12</sub> by X-ray Diffraction, Raman, and Infrared Spectroscopy", Inorg. Chem., 2004, 43, 5245-52. {{doi|10.1021/ic049617y }}</ref> ] has the same structure, whereas ] is different, with two bridging CO ligands, resulting in C<sub>2v</sub> symmetry. The cluster has ''D<sub>3h</sub>'' ], consisting of an ] of Ru atoms, each of which bears two axial and two equatorial CO ligands. The Ru-Ru distance is 284 ].<ref>{{cite journal|last1=Slebodnick|first1=C.|last2=Zhao|first2=J.|last3=Angel|first3=R.|last4=Hanson|first4=B. E.|last5=Song|first5=Y.|last6=Liu|first6=Z.|last7=Hemley|first7=R. J.|title=High Pressure Study of Ru<sub>3</sub>(CO)<sub>12</sub> by X-ray Diffraction, Raman, and Infrared Spectroscopy|journal=Inorg. Chem.|year=2004|volume= 43|issue=17 |pages=5245–5252 |doi=10.1021/ic049617y |pmid=15310201 }}</ref> ] has the same structure. In ], two CO ligands are ], resulting in C<sub>2v</sub> symmetry. In solution, {{chem2|Ru3(CO)12}} is ] as indicated by the observation of a single CO signal in the room temperature <sup>13</sup>C NMR spectrum. The barrier is estimated at 20 kJ/mol<ref>{{cite journal |doi=10.1039/A608514H |title=Dynamics and fluxionality in metal carbonyl clusters: Some old and new problems |date=1997 |last1=Farrugia |first1=Louis J. |journal=Journal of the Chemical Society, Dalton Transactions |issue=11 |pages=1783–1792 }}</ref>


Ru<sub>3</sub>(CO)<sub>12</sub> is prepared by treating solutions of ] with ], usually under high pressure.<ref>Bruce, M. I.; Jensen, C. M.; Jones, N. L. “Dodecacarbonyltriruthenium, Ru<sub>3</sub>(CO)<sub>12</sub>” Inorganic Syntheses, 1989, volume 26, pages 259-61. ISBN 0-471-50485-8.</ref><ref>M. Faure, C. Saccavini, G. Lavigne “Dodecacarbonyltriruthenium, Ru<sub>3</sub>(CO)<sub>12</sub>” Inorganic Syntheses, 2004 Vol 34, p. 110. ISBN 0-471-64750-0.</ref> The stoichiometry of the reaction is uncertain, one possibility being the following: {{chem2|Ru3(CO)12}} is prepared by treating solutions of ] with ] in the presence of a base. ] is an intermediate.<ref>{{cite book|last1=Bruce|first1=M. I.|last2=Jensen|first2=C. M.|last3=Jones|first3=N. L.|chapter=Polynuclear Ruthenium Complexes |title=Inorganic Syntheses|year=1989|volume=26|pages=259–61|doi=10.1002/9780470132579.ch45|isbn=978-0-471-50485-6 }}</ref><ref>{{cite book|first1=Matthieu|last1=Fauré|first2=Catherine|last2=Saccavini|first3=Guy|last3=Lavigne|chapter=Transition Metal Carbonyl Compounds |title=Inorganic Syntheses|doi=10.1002/0471653683.ch3|page=110|volume=34|year=2004|isbn=978-0-471-64750-8 }}</ref> The stoichiometry of the reaction is uncertain, one possibility being the following:
:6 RuCl<sub>3</sub> + 33 CO + 18 CH<sub>3</sub>OH → 2 Ru<sub>3</sub>(CO)<sub>12</sub> + 9 ] + 18 HCl :6 RuCl<sub>3</sub> + 33 CO + 18 CH<sub>3</sub>OH → 2 Ru<sub>3</sub>(CO)<sub>12</sub> + 9 ] + 18 HCl


==Reactions== ==Reactions==
The chemical properties of Ru<sub>3</sub>(CO)<sub>12</sub> have been widely studied, and the cluster has been converted to hundreds of derivatives. High pressures of CO convert the cluster to the monomeric pentacarbonyl, which reverts back to the parent cluster upon standing. The chemical properties of Ru<sub>3</sub>(CO)<sub>12</sub> have been widely studied, and the cluster has been converted to hundreds of derivatives. High pressures of CO convert the cluster to the monomeric ], which reverts to the parent cluster upon standing.
:Ru<sub>3</sub>(CO)<sub>12</sub> + 3 CO <math>\overrightarrow{\leftarrow}</math> 3 Ru(CO)<sub>5</sub> K<sub>eq</sub> = 3.3 x 10<sup>-7</sup> mol dm<sup>–3</sup> at room temperature :Ru<sub>3</sub>(CO)<sub>12</sub> + 3 CO {{eqm}} 3 Ru(CO)<sub>5</sub> K<sub>eq</sub> = 3.3 x 10<sup>−7</sup> mol dm<sup>−3</sup> at room temperature
The instability of Ru(CO)<sub>5</sub> contrasts with the robustness of the corresponding ]. The ] of Ru(CO)<sub>5</sub> into Ru<sub>3</sub>(CO)<sub>12</sub> proceeds via initial, rate-limiting loss of CO to give the unstable, coordinatively unsaturated species Ru(CO)<sub>4</sub>. This tetracarbonyl binds Ru(CO)<sub>5</sub>, initiating the condensation.<ref>Hastings, W. R.; Roussel, M. R.; Baird, M. C. “Mechanism of the conversion of into Journal of the Chemical Society, Dalton Transactions, 1990, pages 203-205. DOI: 10.1039/DT9900000203</ref> The instability of Ru(CO)<sub>5</sub> contrasts with the robustness of the corresponding ]. The ] of Ru(CO)<sub>5</sub> into Ru<sub>3</sub>(CO)<sub>12</sub> proceeds via initial, rate-limiting loss of CO to give the unstable, coordinatively unsaturated species Ru(CO)<sub>4</sub>. This tetracarbonyl binds Ru(CO)<sub>5</sub>, initiating the condensation.<ref>Hastings, W. R.; Roussel, M. R.; Baird, M. C. "Mechanism of the conversion of into " Journal of the Chemical Society, Dalton Transactions, 1990, pages 203-205. {{doi|10.1039/DT9900000203}}</ref>


Upon warming under a pressure of ], Ru<sub>3</sub>(CO)<sub>12</sub> converts to the ]l cluster H<sub>4</sub>Ru<sub>4</sub>(CO)<sub>12</sub>.<ref>Bruce, M. I.; Williams, M. L. “Dodecacarbonyl(tetrahydrido)tetraruthenium, Ru<sub>4</sub>(μ-H)<sub>4</sub>(CO)<sub>12</sub> Inorganic Syntheses, 1989, volume 26, pages 262-63. ISBN 0-471-50485-8.</ref> Ru<sub>3</sub>(CO)<sub>12</sub> undergoes substitution reactions with Lewis bases: Upon warming under a pressure of ], Ru<sub>3</sub>(CO)<sub>12</sub> converts to the ] cluster H<sub>4</sub>Ru<sub>4</sub>(CO)<sub>12</sub>.<ref>Bruce, M. I.; Williams, M. L. "Dodecacarbonyl(tetrahydrido)tetraruthenium, Ru<sub>4</sub>(μ-H)<sub>4</sub>(CO)<sub>12</sub>" Inorganic Syntheses, 1989, volume 26, pages 262-63. {{ISBN|0-471-50485-8}}.</ref> Ru<sub>3</sub>(CO)<sub>12</sub> undergoes substitution reactions with Lewis bases:
:Ru<sub>3</sub>(CO)<sub>12</sub> + n L &rarr; Ru<sub>3</sub>(CO)<sub>12-n</sub>L<sub>n</sub> + n CO (n = 1, 2, or 3) :Ru<sub>3</sub>(CO)<sub>12</sub> + ''n'' L Ru<sub>3</sub>(CO)<sub>12-''n''</sub>L<sub>''n''</sub> + ''n'' CO (''n'' = 1, 2, or 3)
where L is a tertiary ] or an ]. where L is a tertiary ] or an ]. It forms complexes with ].<ref>{{cite journal|first1 =Yukihiro|last1=Motoyama |first2=Chikara|last2=Itonaga |first3=Toshiki |last3=Ishida |first4=Mikihiro |last4=Takasaki |first5=Hideo|last5=Nagashima
| year=2005|title=Catalytic Reduction of Amides to Amines with Hydrosilanes Using a Triruthenium Cluster as the Catalyst |volume=82|at=188|doi= 10.15227/orgsyn.082.0188|journal=Organic Syntheses}}</ref>

{{chem2|Ru3(CO)12}} forms a variety of alkene complexes, some where the Ru3 core remains intact but often with fragmentation. Upon treatment with ] gives the monoRu tricarbonyl derivative:<ref>{{cite book|volume=28|first1=A. J. P.|last1=Domingos|first2=J. A. S.|last2=Howell|first3=B. F. G.|last3=Johnson|first4=J.|last4=Lewis|title=Inorganic Syntheses |chapter=Reagents for the Synthesis of η-Diene Complexes of Tricarbonnyliron and Tricarbonylruthenium |pages=52–55|year=1990|doi=10.1002/9780470132593.ch11|isbn=978-0-471-52619-3 }}</ref>
:{{chem2|Ru3(CO)12 + 3 C8H12 -> 3 Ru(C8H12)(CO)3 + 3 CO}}
Upon ], Ru<sub>3</sub>(CO)<sub>12</sub> converts to an insoluble polymeric form.<ref>{{cite journal |doi=10.1021/ic00236a054 |title=A new form of ruthenium tetracarbonyl |date=1986 |last1=Hastings |first1=W. Ross |last2=Baird |first2=Michael C. |journal=Inorganic Chemistry |volume=25 |issue=16 |pages=2913–2915 }}</ref>


===Ru-carbido clusters=== ===Ru-carbido clusters===
At high temperatures, Ru<sub>3</sub>(CO)<sub>12</sub> converts to a series of clusters that contain interstitial ] ligands. These include Ru<sub>6</sub>C(CO)<sub>17</sub> and Ru<sub>5</sub>C(CO)<sub>15</sub>. Anionic carbido clusters are also known, including <sup>2-</sup> and the ] cluster <sup>2-</sup>.<ref>Nicholls, J. N.; Vargas, M. D. “Carbido-Carbonyl Ruthenium Cluster Complexes” Inorganic Syntheses, 1989, volume 26, pages 280-85. ISBN 0-471-50485-8ISBN.</ref> At high temperatures, Ru<sub>3</sub>(CO)<sub>12</sub> converts to a series of clusters that contain interstitial ] ligands. These include Ru<sub>6</sub>C(CO)<sub>17</sub> and Ru<sub>5</sub>C(CO)<sub>15</sub>. Anionic carbido clusters are also known, including <sup>2−</sup> and the ] cluster <sup>2−</sup>.<ref>Nicholls, J. N.; Vargas, M. D. "Carbido-Carbonyl Ruthenium Cluster Complexes" Inorganic Syntheses, 1989, volume 26, pages 280-85. {{doi|10.1002/9780470132579.ch49}}</ref> Ru<sub>3</sub>(CO)<sub>12</sub> -derived carbido compounds have been used to synthesize nanoparticles for catalysis. These particles consist of 6-7 atoms and thus are all surface, resulting in extraordinary activity.

Ru<sub>3</sub>(CO)<sub>12</sub> -derived carbido compounds have been used to synthesize nanoparticles for catalysis. These particles consist of 6-7 atoms and thus are all surface, resulting in extraordinary activity.


==References== ==References==
{{reflist}} {{reflist}}
{{Ruthenium compounds}}


] ]
] ]
]

]
]
]