Misplaced Pages

User:Salix alba/sandbox

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
< User:Salix alba

Let N {\textstyle N} be odd

  • first item
  • second item

and M {\textstyle M} even.


 R J M {\displaystyle {\text{ R J M}}} {\displaystyle {}^{\wedge }}   ~ a ~ {\displaystyle {\tilde {\ }}{\tilde {\phantom {a}}}}

α β γ δ ϵ ζ η θ {\displaystyle {\boldsymbol {\alpha \beta \gamma \delta \epsilon \zeta \eta \theta }}}

α {\displaystyle {\boldsymbol {\alpha }}}

( × F ) d S {\displaystyle (\nabla \times \mathbf {F} )\cdots {\mathrm {d} }\mathbf {S} } = S F {\displaystyle \oint _{\partial S}\mathbf {F} } \cdot d {\displaystyle {\mathrm {d} }{\boldsymbol {\ell }}}

a snap b {\displaystyle a\operatorname {snap} b}

n Z {\displaystyle \displaystyle \sum _{n\in \mathbb {Z} }} n Z {\displaystyle \displaystyle \sum _{n\in \mathbb {Z} }}


SVG: n Z {\displaystyle \displaystyle \sum _{n\in \mathbb {Z} }} MathML: n

\mathcal{A} A {\displaystyle {\mathcal {A}}} A {\displaystyle {\mathcal {A}}} 𝒜

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z {\displaystyle {\mathcal {ABCDEFGHIJKLMNOPQRSTUVWXYZ}}} a b c d e f g h i j k l m n o p q r s t u v w x y z {\displaystyle {\mathcal {abcdefghijklmnopqrstuvwxyz}}}

B b | ψ {\displaystyle B^{b}|\psi \rangle } B b | ψ {\displaystyle B^{b}|\psi \rangle }


B b | ψ ) {\displaystyle B^{b}|\psi )}

| ψ {\displaystyle |\psi \rangle }

| B b {\displaystyle |B^{b}\rangle }

B b | ψ {\displaystyle B^{b}\left|\psi \right\rangle }

B b | ψ {\displaystyle B^{b}\left|\psi \right\rangle }

B b | ψ } {\displaystyle B^{b}|\psi \rbrace }

B b | ψ ] {\displaystyle B^{b}|\psi ]}

p ( a | b ) {\displaystyle p(a|b)}

p ( a | b ) {\displaystyle p(a|b)}

max B y b | ψ {\displaystyle \textstyle \max _{B_{y}^{b}|\psi \rangle }}

max B y b | ψ {\textstyle \max _{B_{y}^{b}|\psi \rangle }}

f : X Y {\displaystyle f:X\to Y} SVG f : X Y {\displaystyle f:X\to Y}

A B {\displaystyle A\backslash B} SVG A B {\displaystyle A\backslash B}


A B {\displaystyle A\backslash B}

A B C D {\displaystyle A\angle B\sphericalangle C\measuredangle D}

A B C D E F G H {\displaystyle A\Box B\square C\blacksquare D\Diamond E\lozenge F\blacklozenge G\bigstar H}

A B C D E {\displaystyle A\triangle B\triangledown C\blacktriangle D\blacktriangledown E}

A B C D & E {\displaystyle A\forall B\exists C\nexists D\And E}

A ¬ B ¬ C R D E F {\displaystyle A\lnot B\neg C\not \operatorname {R} D\bot E\top F}

A § B {\displaystyle A\S B}

A B C D E F G H I {\displaystyle A\diamondsuit B\heartsuit C\clubsuit D\spadesuit E\Game F\flat G\natural H\sharp I}

A B C {\displaystyle A\diagup B\diagdown C}

PNG A foo B {\displaystyle A\operatorname {foo} B} A foo B {\displaystyle A\operatorname {foo} B} PNG A foo B {\displaystyle A\operatorname {foo} B}

G ( V , g ) {\displaystyle \operatorname {G} (V,g)} SVG G ( V , g ) {\displaystyle \operatorname {G} (V,g)}

A , D ( p q ) {\displaystyle \|A\|,D(p\|q)} SVG A , D ( p q ) {\displaystyle \|A\|,D(p\|q)}

q ( v ) = v 2 {\displaystyle q(v)=\|v\|^{2}} SVG q ( v ) = v 2 {\displaystyle q(v)=\|v\|^{2}}

q ( v ) = | v | 2 {\displaystyle q(v)=|v|^{2}} SVG q ( v ) = | v | 2 {\displaystyle q(v)=|v|^{2}}

<math>q(v)=|v|^2</math> MathML/MathJax q ( v ) = | v | 2 {\displaystyle q(v)=|v|^{2}} SVG q ( v ) = | v | 2 {\displaystyle q(v)=|v|^{2}}

<math>q(v)=\|v\|^2</math> MathML/MathJax q ( v ) = v 2 {\displaystyle q(v)=\|v\|^{2}} SVG q ( v ) = v 2 {\displaystyle q(v)=\|v\|^{2}}

<math>q(v)=\|v\|_A</math> MathML/MathJax q ( v ) = v A {\displaystyle q(v)=\|v\|_{A}} SVG q ( v ) = v A {\displaystyle q(v)=\|v\|_{A}}

<math>x^2</math> MathML/MathJax x 2 {\displaystyle x^{2}} SVG x 2 {\displaystyle x^{2}}

<math>(v)^2</math> MathML/MathJax ( v ) 2 {\displaystyle (v)^{2}} SVG ( v ) 2 {\displaystyle (v)^{2}}


SVG: x x x y x l x 2 {\displaystyle {\frac {x}{x}}\quad {\frac {x}{y}}\quad {\frac {x}{l}}\quad {\frac {x}{2}}} MathML: xxxyxlx2

SVG: x x y x l x 2 x {\displaystyle {\frac {x}{x}}\quad {\frac {y}{x}}\quad {\frac {l}{x}}\quad {\frac {2}{x}}} MathML: xxyxlx2x

<math>\cancel{y}</math> MathML/MathJax y {\displaystyle {\cancel {y}}} SVG y {\displaystyle {\cancel {y}}}

<math>\cancel{x}</math> MathML/MathJax x {\displaystyle {\cancel {x}}} SVG x {\displaystyle {\cancel {x}}}

<math>\cancel{xyz}</math> MathML/MathJax x y z {\displaystyle {\cancel {xyz}}} SVG x y z {\displaystyle {\cancel {xyz}}}


let N {\textstyle N} be odd

  1. foo
  2. bar

and M {\textstyle M} even.



Pick a random number 1 < a < N {\textstyle 1<a<N} .|Compute K = gcd ( a , N ) {\displaystyle K=\gcd(a,N)} , the greatest common divisor of a {\displaystyle a} and N {\displaystyle N} .|If K 1 {\displaystyle K\neq 1} , then K {\displaystyle K} is a nontrivial factor of N {\displaystyle N} , with the other factor being N K {\textstyle {\frac {N}{K}}} and we are done.|Otherwise, use the quantum subroutine to find the order r {\displaystyle r} of a {\displaystyle a} .|If r {\displaystyle r} is odd, then go back to step 1.|Compute g = gcd ( N , a r / 2 + 1 ) {\displaystyle g=\gcd(N,a^{r/2}+1)} . If g {\displaystyle g} is nontrivial, the other factor is N g {\textstyle {\frac {N}{g}}} , and we're done. Otherwise, go back to step 1. }}It has been shown that this will be likely to succeed after a few runs. In practice, a single call to the quantum order-finding subroutine is enough to completely factor N {\displaystyle N} with very high probability of success if one uses a more advanced reduction.

  1. Cite error: The named reference siam was invoked but never defined (see the help page).
  2. Ekerå, Martin (June 2021). "On completely factoring any integer efficiently in a single run of an order-finding algorithm". Quantum Information Processing. 20 (6): 205. arXiv:2007.10044. Bibcode:2021QuIP...20..205E. doi:10.1007/s11128-021-03069-1.