Misplaced Pages

1-Hexene

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
1-Hexene
1-Hexene
1-Hexene molecule
Names
Preferred IUPAC name Hex-1-ene
Other names Hexene, Hexylene, Butyl ethylene
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.008.868 Edit this at Wikidata
EC Number
  • 209-753-1
PubChem CID
RTECS number
  • MP6670000
UNII
UN number 2370
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C6H12/c1-3-5-6-4-2/h3H,1,4-6H2,2H3Key: LIKMAJRDDDTEIG-UHFFFAOYSA-N
  • InChI=1/C6H12/c1-3-5-6-4-2/h3H,1,4-6H2,2H3Key: LIKMAJRDDDTEIG-UHFFFAOYAY
SMILES
  • C=CCCCC
  • CCCCC=C
Properties
Chemical formula C6H12
Molar mass 84.162 g·mol
Appearance Colorless liquid
Density 0.673 g/cm
Melting point −139.8 °C (−219.6 °F; 133.3 K)
Boiling point 63 °C (145 °F; 336 K)
Solubility in water Insoluble
Viscosity 0.51 cP (0.51 mPa·s) at 28°C
Hazards
GHS labelling:
Pictograms GHS02: FlammableGHS07: Exclamation markGHS08: Health hazard
Signal word Warning
Hazard statements H225, H304, H319
Precautionary statements P210, P233, P240, P241, P242, P243, P264, P280, P301+P310, P303+P361+P353, P305+P351+P338, P331, P337+P313, P370+P378, P403+P235, P405, P501
Safety data sheet (SDS) External MSDS
Supplementary data page
1-Hexene (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

1-Hexene (hex-1-ene) is an organic compound with the formula C6H12. It is an alkene that is classified in industry as higher olefin and an alpha-olefin, the latter term meaning that the double bond is located at the alpha (primary) position, endowing the compound with higher reactivity and thus useful chemical properties. 1-Hexene is an industrially significant linear alpha olefin. It is a colourless liquid.

Production

1-Hexene is commonly manufactured by two general routes: (i) full-range processes via the oligomerization of ethylene and (ii) on-purpose technology. A minor route to 1-hexene, used commercially on smaller scales, is the dehydration of hexanol. Prior to the 1970s, 1-hexene was also manufactured by the thermal cracking of waxes. Linear internal hexenes were manufactured by chlorination/dehydrochlorination of linear paraffins.

"Ethylene oligomerization" combines ethylene molecules to produce linear alpha-olefins of various chain lengths with an even number of carbon atoms. This approach result in a distribution or “full range” of alpha-olefins. The Shell higher olefin process (SHOP) employs this approach. Linde and SABIC have developed the α-SABLIN technology using the oligomerization of ethylene to produce 21 percent 1-hexene. CP Chemicals and Innovene also have full-range processes. Typically, 1-hexene content ranges from about twenty percent distribution in the Ethyl (Innovene) process, whereas only twelve percent of distribution in the CP Chemicals and Idemitsu processes.

An on purpose route to 1-hexene using ethylene trimerization was first brought on stream in Qatar in 2003 by Chevron-Phillips. A second plant was scheduled to start in 2011 in Saudi Arabia and a third planned for 2014 in the US. The Sasol process is also considered an on-purpose route to 1-hexene. Sasol commercially employs Fischer–Tropsch synthesis to make fuels from synthesis gas derived from coal. The synthesis recovers 1-hexene from the aforementioned fuel streams, where the initial 1-hexene concentration cut may be 60% in a narrow distillation, with the remainder being vinylidenes, linear and branched internal olefins, linear and branched paraffins, alcohols, aldehydes, carboxylic acids, and aromatic compounds. The trimerization of ethylene by homogeneous catalysts has been demonstrated. An alternative on-purpose route has been reported by Lummus Technology.

Applications

The primary use of 1-hexene is as a comonomer in production of polyethylene. High-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) use approximately 2–4% and 8–10% of comonomers, respectively.

Another significant use of 1-hexene is the production of the linear aldehyde heptanal via hydroformylation (oxo synthesis). Heptanal can be converted to the short-chain fatty acid heptanoic acid or the alcohol heptanol.

The chemical is used in the synthesis of flavors, perfumes, dyes and resins.

Hazards

1-Hexene is considered dangerous because in liquid and vapor form it is highly flammable and may be fatal if swallowed and enters airways.

The widespread use of 1-hexene may result in its release to the environment through various waste streams. The substance is toxic to aquatic organisms.

References

  1. Lappin, George (Editor), Alpha Olefins Applications Handbook, Marcel Dekker Inc., ISBN 978-0-8247-7895-8
  2. (18 October 2010) Chevron Phillips Chemical announces plans for world-scale 1-hexene plant Archived 2014-11-29 at the Wayback Machine Plastinfo, Plastics Industry Directory, Retrieved 30 September 2011
  3. David S. McGuinness, Peter Wasserscheid, Wilhelm Keim, David Morgan, John T. Dixon, Annette Bollmann, Hulisani Maumela, Fiona Hess, and Ulli Englert "First Cr(III)−SNS Complexes and Their Use as Highly Efficient Catalysts for the Trimerization of Ethylene to 1-Hexene" J. Am. Chem. Soc., 2003, volume 125, pp 5272–5273. doi:10.1021/ja034752f.
  4. "To make better decisions, you need to see the big picture".
  5. "1-Hexene". PubChem. National Institutes of Health. Retrieved 21 January 2019.

External links

Binary compounds of hydrogen
Alkali metal
(Group 1) hydrides
Alkaline
(Group 2)
earth hydrides
Monohydrides
Dihydrides
Group 13
hydrides
Boranes
Alanes
Gallanes
Indiganes
Thallanes
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
Silanes
Silenes
Silynes
Germanes
Stannanes
Plumbanes
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen
(Group 15) hydrides
Azanes
Azenes
Phosphanes
Phosphenes
Arsanes
Stibanes
Bismuthanes
Moscovanes
Hydrogen
chalcogenides
(Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    Selanes
    Tellanes
    Polanes
    Livermoranes
    Hydrogen halides
    (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition metal hydrides
    Lanthanide hydrides
    Actinide hydrides
    Exotic matter hydrides
    Category: