Misplaced Pages

3-Chlorobenzonitrile

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
3-Chlorobenzonitrile
Names
Other names meta-Chlorobenzonitrile
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.011.065 Edit this at Wikidata
EC Number
  • 212-172-6
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C7H4ClN/c8-7-3-1-2-6(4-7)5-9/h1-4HKey: WBUOVKBZJOIOAE-UHFFFAOYSA-N
SMILES
  • C1=CC(=CC(=C1)Cl)C#N
Properties
Chemical formula C7H4ClN
Molar mass 137.57 g·mol
Appearance colorless solid
Melting point 40–41 °C (104–106 °F; 313–314 K)
Hazards
GHS labelling:
Pictograms GHS06: ToxicGHS07: Exclamation mark
Signal word Danger
Hazard statements H302, H312, H319
Precautionary statements P264, P270, P273, P280, P301+P312, P302+P352, P305+P351+P338, P312, P322, P330, P337+P313, P361, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

3-Chlorobenzonitrile is an organic compound with the chemical formula ClC6H4CN. It is one of the isomers of chlorobenzonitrile.

Preparation and reactions

Typically, aryl nitriles are produced by ammoxidation. 3-Chlorobenzonitrile can also be produced by dehydration of the aldoxime of 3-chlorobenzaldehyde. It can also be produced by heating 3-chlorobenzylamine and iodine in ammonium acetate aqueous solution.

In the presence of copper nanoparticles, 3-chlorobenzonitrile can be reduced by sodium borohydride to 3-chlorobenzylamine. Some ruthenium catalyzers can catalysis the hydrolysis of 3-chlorobenzonitrile to form 3-chlorobenzamide.

References

  1. Takashi Keumi; Masakazu Shimada; Toshio Morita; Hidehiko Kitajima (August 1990). "2-(Trifluoroacetyloxy)pyridine as a Mild Trifluoroacetylating Reagent of Amines and Alcohols". Bulletin of the Chemical Society of Japan. 63 (8): 2252–2256. doi:10.1246/bcsj.63.2252. ISSN 0009-2673.
  2. Pollak, Peter; Romeder, Gérard; Hagedorn, Ferdinand; Gelbke, Heinz-Peter (2000). "Nitriles". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_363. ISBN 978-3527306732.
  3. Stephan Enthaler; Maik Weidauer; Fanny Schröder (February 2012). "Straightforward zinc-catalyzed transformation of aldehydes and hydroxylamine hydrochloride to nitriles". Tetrahedron Letters. 53 (7): 882–885. doi:10.1016/j.tetlet.2011.12.036. Retrieved 2021-12-20.
  4. Yiming Ren; Shuo Jin (2017-01-01). "Molecular iodine/aqueous NH4OAc: a green reaction system for direct oxidative synthesis of nitriles from amines". Journal of Advanced Oxidation Technologies. 20 (1). doi:10.1515/jaots-2016-0175. ISSN 2371-1175. S2CID 99163202. Retrieved 2021-12-20.
  5. Asghar Zamani; Ahmad Poursattar Marjani; Abbas Nikoo; Mojtaba Heidarpour; Ahmad Dehghan (2018-03-04). "Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction". Inorganic and Nano-Metal Chemistry. 48 (3): 176–181. doi:10.1080/24701556.2018.1503676. ISSN 2470-1556. S2CID 140005906. Retrieved 2021-12-20.
  6. Victorio Cadierno; Javier Francos; José Gimeno (2008-07-28). "Selective Ruthenium-Catalyzed Hydration of Nitriles to Amides in Pure Aqueous Medium Under Neutral Conditions". Chemistry - A European Journal. 14 (22): 6601–6605. doi:10.1002/chem.200800847. PMID 18567025. Retrieved 2021-12-20.
Categories: