Names | |
---|---|
Preferred IUPAC name 4-Ethyl-2-methoxyphenol | |
Other names
p-Ethylguaiacol Homocresol Guaiacyl ethane 2-Methoxy-4-ethylphenol | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.018.637 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C9H12O2 |
Molar mass | 152.193 g·mol |
Appearance | Colorless liquid |
Density | 1064 kg/m (20 °C) |
Melting point | 15 °C (59 °F; 288 K) |
Boiling point | 235.1 °C (455.2 °F; 508.2 K) |
Hazards | |
GHS labelling: | |
Pictograms | |
Signal word | Warning |
Hazard statements | H315, H319, H335 |
Precautionary statements | P302+P352, P305+P351+P338 |
NFPA 704 (fire diamond) | 2 1 0 |
Safety data sheet (SDS) | External MSDS |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
4-Ethylguaiacol, often abbreviated to 4-EG, is a phenolic compound with the molecular formula C9H12O2. It can be produced in wine and beer by Brettanomyces. It is also frequently present in bio-oil produced by pyrolysis of lignocellulosic biomass.
Winemaking
It is produced along with 4-ethylphenol (4-EP) in wine and beer by the spoilage yeast Brettanomyces. When it is produced by the yeast to concentrations greater than the sensory threshold of >600 μg/L, it can contribute bacon, spice, clove, or smoky aromas to the wine. On their own these characters can be quite attractive in a wine, however as the compound usually occurs with 4-EP whose aromas can be more aggressive, the presence of the compound often signifies a wine fault. The ratio in which 4-EP and 4-EG are present can greatly affect the organoleptic properties of the wine.
Bio-oil
4-Ethylguaiacol can also be produced by pyrolysis of lignocellulosic biomass. It is produced from the lignin, along with many of the other phenolic compounds present in bio-oil. In particular, 4-ethylguaiacol is derived from guaiacyl in the lignin.
See also
References
- ^ Mozaffari, Parsa; Järvik, Oliver; Baird, Zachariah Steven (2020-10-28). "Vapor Pressures of Phenolic Compounds Found in Pyrolysis Oil". Journal of Chemical & Engineering Data. 65 (11): 5559–5566. doi:10.1021/acs.jced.0c00675. ISSN 0021-9568. S2CID 228958726.
- GHS: Sigma-Aldrich W243604
- ^ Caboni, Pierluigi; Sarais, Giorgia; Cabras, Marco; Angioni, Alberto (2007). "Determination of 4-Ethylphenol and 4-Ethylguaiacol in Wines by LC-MS-MS and HPLC-DAD-Fluorescence". Journal of Agricultural and Food Chemistry. 55 (18): 7288–93. doi:10.1021/jf071156m. PMID 17676867.
- ^ Lyu, Gaojin; Wu, Shubin; Zhang, Hongdan (2015). "Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions". Frontiers in Energy Research. 3. doi:10.3389/fenrg.2015.00028. ISSN 2296-598X.