Misplaced Pages

Boeing 757

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from 757-300) Airliner family by Boeing

Boeing 757
A mostly white Boeing 757 with blue and yellow trim preparing for landing against a grey sky. A Boeing 757-200 of United Airlines, one of the primary users, in February 2017
General information
TypeNarrow-body jet airliner
National originUnited States
ManufacturerBoeing Commercial Airplanes
StatusIn service
Primary usersDelta Air Lines
Number built1,050
History
Manufactured1981–2004
Introduction dateJanuary 1, 1983, with Eastern Air Lines
First flightFebruary 19, 1982; 42 years ago (1982-02-19)
VariantsBoeing C-32

The Boeing 757 is an American narrow-body airliner designed and built by Boeing Commercial Airplanes. The then-named 7N7, a twinjet successor for the trijet 727, received its first orders in August 1978. The prototype completed its maiden flight on February 19, 1982, and it was FAA certified on December 21, 1982. Eastern Air Lines placed the initial 757-200 variant in commercial service on January 1, 1983. A package freighter (PF) variant entered service in September 1987 and a combi model in September 1988. The stretched 757-300 was launched in September 1996 and began service in March 1999. After 1,050 had been built for 54 customers, production ended in October 2004, while Boeing offered the largest 737 NG variants as a successor to the -200.

The jetliner is powered by 36,600–43,500 lbf (163–193 kN) Rolls-Royce RB211 or Pratt & Whitney PW2000 underwing turbofan engines for a 255,000–273,000 lb (116–124 t) maximum takeoff weight (MTOW). The 757 has a 2,000 sq ft (185 m) supercritical wing for reduced aerodynamic drag and a conventional tail. It keeps the 707 fuselage width and six–abreast seating and its two-crew glass cockpit has a common type rating with the concurrently designed 767 (a wide-body aircraft). It was produced in two fuselage lengths: the 155 ft (47.3 m) long 757-200 (the most popular with 913 built) typically seats 200 passengers in two classes over 3,915 nautical miles  (7,250 km; 4,505 mi); while the 178 ft (54.4 m) long 757-300 typically seats 243 over 3,400 nmi (6,295 km; 3,900 mi). The 757-200F can haul a 72,210 lb (32,755 kg) payload over 2,935 nmi (5,435 km; 3,378 mi). Passenger 757-200s have been modified for cargo use as the Special Freighter (SF) and the Precision Converted Freighter (PCF).

Major customers for the 757 included U.S. mainline carriers, European charter airlines, and cargo companies. It was commonly used for short and mid-range domestic routes, shuttle services, and transcontinental U.S. flights. ETOPS extended flights were approved in 1986 to fly intercontinental routes. Private and government operators have customized the 757 as VIP carriers such as the US C-32. In July 2017, there were 665 Boeing 757 in commercial service, with Delta Air Lines being the largest operator with 127 airplanes in its fleet. The airliner has recorded ten hull-loss accidents out of a total of 13 hull losses, as of November 2023.

Development

Background

In the early 1970s, following the launch of the first wide-body airliner, the 747, Boeing began considering further developments of its narrow-body 727. Designed for short and medium length routes, the trijet was the best-selling jetliner of the 1960s and a mainstay of the U.S. domestic airline market. Studies focused on improving the 189-seat 727-200, the most successful variant. Two approaches were considered: a stretched 727 (to be designated 727-300), and an all-new aircraft code-named 7N7. The former was a cheaper derivative using the 727's existing technology and tail-mounted engine configuration, while the latter was a twin-engine aircraft which made use of new materials and improvements to propulsion technology which had become available in the civil aerospace industry.

Side view of silver twin-engine jet taxiing on runway, with deployed flaps and "757" markings on tail.
The 7N7 made its Farnborough Airshow debut in 1982 as the 757-200.

United Airlines provided input for the proposed 727-300, which Boeing was poised to launch in late 1975, but lost interest after examining development studies for the 7N7. Although the 727-300 was offered to Braniff International Airways and other carriers, customer interest remained insufficient for further development. Instead, airlines were drawn to the high-bypass-ratio turbofan engines, new flight deck technologies, lower weight, improved aerodynamics, and reduced operating cost promised by the 7N7. These features were also included in a parallel development effort for a new mid-size wide-body airliner, code-named 7X7, which became the 767. Work on both proposals accelerated as a result of the airline industry upturn in the late 1970s.

By 1978, development studies focused on two variants: a 7N7-100 with seating for 160, and a 7N7-200 with room for over 180 seats. New features included a redesigned wing, under-wing engines, and lighter materials, while the forward fuselage, cockpit layout, and T-tail configuration were retained from the 727. Boeing planned for the aircraft to offer the lowest fuel burn per passenger-kilometer of any narrow-body airliner. On August 31, 1978, Eastern Air Lines and British Airways became the first carriers to publicly commit to the 7N7 when they announced launch orders totaling 40 aircraft for the 7N7-200 version. These orders were signed in March 1979, when Boeing officially designated the aircraft as the 757. The shorter 757-100 did not receive any orders and was dropped; 737s later fulfilled its envisioned role.

Design effort

The 757 was intended to be more capable and more efficient than the preceding 727. The focus on fuel efficiency reflected airline concerns over operating costs, which had grown amid rising oil prices during the Yom Kippur War of 1973. Design targets included a 20 percent reduction in fuel consumption from new engines, plus 10 percent from aerodynamic improvements, versus preceding aircraft. Lighter materials and new wings were also expected to improve efficiency. The maximum take-off weight (MTOW) was set at 220,000 pounds (99,800 kg), which was 10,000 pounds (4,540 kg) more than the 727. The 757's higher thrust-to-weight ratio allowed it to take off from short runways and serve airports in hot and high conditions with higher ambient temperatures and thinner air, offering better takeoff performance than that offered by competing aircraft. Competitors needed longer takeoff runs for these hot and high conditions. Boeing also offered options for higher payload capability.

Forward view of aircraft, showing fuselage profile, two circular engines.
Forward view of a Transavia Airlines 757-200, showing fuselage profile, wing dihedral, and RB211 engines

The twin-engine configuration was chosen for greater fuel efficiency versus three- and four-engine designs. Launch customers Eastern Air Lines and British Airways selected the RB211-535C turbofan built by Rolls-Royce, which was capable of 37,400 pounds-force (166 kN) of thrust. This marked the first time that a Boeing airliner was launched with engines produced outside the U.S. Domestic manufacturer Pratt & Whitney subsequently offered the 38,200 pounds-force (170 kN) thrust PW2037, which Delta Air Lines launched with an order for 60 aircraft in November 1980. General Electric also offered its CF6-32 engine early in the program, but eventually abandoned its involvement due to insufficient demand.

As development progressed, the 757 increasingly departed from its 727 origins and adopted elements from the 767, which was several months ahead in development. To reduce risk and cost, Boeing combined design work on both twinjets, resulting in shared features such as interior fittings and handling characteristics. Computer-aided design, first applied on the 767, was used for over one-third of the 757's design drawings. In early 1979, a common two-crew member glass cockpit was adopted for the two aircraft, including shared instrumentation, avionics, and flight management systems. In October 1979 the nose was widened and dropped to reduce aerodynamic noise by six dB, to improve the flight deck view and to give more working area for the crew and for greater commonality with the 767. Cathode-ray tube (CRT) color displays replaced conventional electromechanical instruments, with increased automation eliminating the flight engineer position common to three-person cockpits. After completing a short conversion course, pilots rated on the 757 could be qualified to fly the 767 and vice versa, owing to their design similarities.

Side view of twin-engine jet on tarmac, with attached airstairs and support vehicle, along with a trijet aircraft in the background.
Predecessor and successor: an Air Atlantis 727-200 and an Air Europe 757-200

A new aft-loaded shape which produced lift across most of the upper wing surface, instead of a narrow band as in previous airfoil designs, was used for the 757's wings. The more efficient wings had less drag and greater fuel capacity, and were similar in configuration to those on the 767. A wider wingspan than the 727's produced less lift-induced drag, while larger wing roots increased undercarriage storage space and provided room for future stretched versions of the aircraft.

One of the last 727 vestiges, the T-tail, was dropped in mid-1979 in favor of a conventional tail. This avoided the risk of an aerodynamic condition known as a deep stall, and allowed for more passengers to be carried in a less tapered rear fuselage. At 155.3 feet (47.3 m) in length, the 757-200 was 2.1 feet (0.640 m) longer than the 727-200, and with a greater proportion of its internal volume devoted to cabin space, seating was available for 239 passengers, or 50 more than its predecessor. The fuselage cross-section, whose upper lobe was common to the 707 and 737, was the only major structural feature to be retained from the 727. This was mainly to reduce drag, and while a wider fuselage had been considered, Boeing's market research found low cargo capacity needs and reduced passenger preference for wide-body aircraft on short-haul routes.

Production and testing

Boeing built a final assembly line in Washington at its Renton factory, home of 707, 727, and 737 production, to produce the 757. Early in the development program, Boeing, British Airways, and Rolls-Royce unsuccessfully lobbied the British aircraft industry to manufacture 757 wings. Ultimately, about half of the aircraft's components, including the wings, nose section, and empennage, were produced in-house at Boeing facilities with the remainder subcontracted to primarily U.S.-based companies. Fairchild Aircraft made the leading edge slats, Grumman supplied the flaps, and Rockwell International produced the main fuselage. Production ramp-up for the new narrow-body airliner coincided with the winding-down of the 727 program, and final assembly of the first aircraft began in January 1981.

Side view of aircraft in flight with extended gear, against a grassy hill backdrop
British Airways was one of the first customers for the RB211-powered 757.

The prototype 757 rolled out of the Renton factory on January 13, 1982. The aircraft, equipped with RB211-535C engines, completed its maiden flight one week ahead of schedule on February 19, 1982. The first flight was affected by an engine stall, following indications of low oil pressure. After checking system diagnostics, company test pilot John Armstrong and co-pilot Lew Wallick were able to restart the affected engine, and the flight proceeded normally thereafter. Subsequently, the 757 embarked on a seven-day weekly flight test schedule. By this time, the aircraft had received 136 orders from seven carriers, namely Air Florida, American Airlines, British Airways, Delta Air Lines, Eastern Air Lines, Monarch Airlines, and Transbrasil.

The seven-month 757 flight test program used the first five aircraft built. Tasks included flight systems and propulsion tests, hot and cold weather trials, and route-proving flights. Data from the 767 program helped expedite the process. After design issues were identified, the 757's exit doors received dual-spring mechanisms for easier operation, and the fuselage was strengthened for greater bird strike resistance. The production aircraft was 3,600 pounds (1,630 kg) lighter than originally specified, and recorded a three percent better-than-expected rate of fuel burn. This resulted in a range increase of 200 nautical miles (370 km; 230 mi), and prompted Boeing to tout the aircraft's fuel efficiency characteristics. After 1,380 flight test hours, the RB211-powered 757 received U.S. Federal Aviation Administration (FAA) certification on December 21, 1982, followed by UK Civil Aviation Authority (CAA) certification on January 14, 1983. The first delivery to launch customer Eastern Air Lines occurred on December 22, 1982, about four months after the first 767 deliveries. The first 757 with PW2037 engines rolled out about one year later, and was delivered to Delta Air Lines on November 5, 1984.

Service entry and operations

Side view of silver twinjet in flight, with "757" markings on tail.
Eastern Air Lines began domestic 757 operations in January 1983 and later deployed the aircraft on transcontinental routes.

Eastern Air Lines operated the first commercial 757 flight on January 1, 1983, on the Atlanta-to-Tampa route. On February 9, 1983, British Airways began using the aircraft for London-to-Belfast shuttle services, where it replaced Hawker Siddeley Trident 3B trijets. Charter carriers Monarch Airlines and Air Europe also began 757 operations later that year. Early operators noted improved reliability and quieter performance compared with previous jetliners. Transition courses eased pilots' introduction to the new CRT-based cockpit, and no major technical issues arose. Eastern Air Lines, the first 727 operator to take delivery of 757s, confirmed that the aircraft had greater payload capability than its predecessor, along with lower operating costs through improved fuel burn and the use of a two-crew member flight deck. Compared with the 707 and 727, the new twinjet consumed 42 and 40 percent less fuel per seat, respectively, on typical medium-haul flights.

Despite the successful debut, 757 sales remained stagnant for most of the 1980s, a consequence of declining fuel prices and a shift to smaller aircraft in the post-deregulation U.S. market. Although no direct competitor existed, 150-seat narrow-bodies such as the McDonnell Douglas MD-80 were less expensive and carried nearly as many passengers as some airlines' 757s. A three-year sales drought abated in November 1983 when Northwest Airlines placed orders for 20 aircraft, which averted a costly production rate decrease. In December 1985, a freighter model, the 757-200PF, was announced following a launch order for 20 aircraft from UPS Airlines, and in February 1986, a freighter-passenger combi model, the 757-200M, was launched with an order for one aircraft from Royal Nepal Airlines. The freighter model included a main deck cargo hold and entered service with UPS in September 1987. The combi model could carry both cargo and passengers on its main deck and entered service with Royal Nepal Airlines in September 1988.

In the late 1980s, increasing airline hub congestion and the onset of U.S. airport noise regulations fueled a turnaround in 757 sales. From 1988 to 1989, airlines placed 322 orders, including a combined 160 orders from American Airlines and United Airlines. By this time, the 757 had become commonplace on short-haul domestic flights and transcontinental services in the U.S., and had replaced aging 707s, 727s, Douglas DC-8s, and McDonnell Douglas DC-9s. The 757-200's maximum range of 3,900 nautical miles (7,220 km; 4,490 mi), which was over one-and-a-half times the 727's, allowed airlines to use the aircraft on longer nonstop routes. The 757 was also flown out of airports with stringent noise regulations, such as John Wayne Airport in Orange County, California, and airports with aircraft size restrictions, such as Washington National Airport near downtown Washington, D.C. The largest U.S. operators, Delta Air Lines and American Airlines, would ultimately operate fleets of over 100 aircraft each.

Side quarter view of aircraft at takeoff, with snow-covered mountains behind.
Monarch Airlines began 757 charter services in March 1983.

In Europe, British Airways, Iberia, and Icelandair were the 757's largest mainline customers, while other carriers such as Lufthansa rejected the type as too large for their narrow-body aircraft needs. Many European charter airlines, including Air 2000, Air Holland, and LTU International, also acquired the twinjet for holiday and tour package flights in the late 1980s. In Asia, where even larger aircraft were commonly preferred because of greater passenger volumes, the 757 found fewer orders. A 1982 sales demonstration was unable to attract a purchase from potential customer Japan Airlines, and the first Asian customer, Singapore Airlines, sold its four 757s in 1989 in favor of standardizing on the 240-seat wide-body Airbus A310, just five years after debuting the type on Indonesian and Malaysian routes. The 757 fared better in China, where following an initial purchase by the CAAC Airlines in 1987, orders grew to 59 aircraft, making it the largest Asian market. Operators such as China Southern, China Southwest, Shanghai Airlines, Xiamen Airlines, and Xinjiang Airlines used the 757 on medium length domestic routes.

In 1986, the FAA approved RB211-powered 757s for extended-range twin-engine operational performance standards (ETOPS) operations over the North Atlantic, following precedents set by the 767. Under ETOPS regulations, a set of safety standards governing twinjet flights over oceans and other areas without nearby suitable landing sites, airlines began using the aircraft for mid-range intercontinental routes. Although the 757 was not originally intended for transoceanic flights, regulators based their decision on its reliable performance record on extended transcontinental U.S. services. ETOPS certification for 757s equipped with PW2000 series engines was granted in 1992.

In the early 1990s, the FAA and other U.S. government agencies, including the National Aeronautics and Space Administration (NASA) and the National Transportation Safety Board (NTSB), began studying the 757's wake turbulence characteristics. This followed several incidents, including two fatal crashes, in which small private aircraft experienced loss of control when flying close behind the twinjet. Smaller airliners had also suffered unexpected rolling movements when flying behind 757s. Investigators focused on the aircraft's aft-loaded wing design, which at certain points during takeoff or landing could produce wingtip vortices that were stronger than those emanating from larger 767s and 747s. Other tests were inconclusive, leading to debate among government agencies, and in 1994 and 1996 the FAA updated air traffic control regulations to require greater separation behind the 757 than other large-category jets. The 757 became the only sub-300,000-pound (136,000 kg) airliner to be classified as a "heavy" jet, alongside wide-body aircraft, under FAA separation rules.

Shortened variant: -100

757-100 was a 150-seat, short fuselage version intended to offer similar capacity to a 727-200 but with greater range. Both the 757-100 and -200 were announced at the product launch on August 31, 1978, however the large wing and landing gear common with the 757-200 were found to be excessively heavy for an aircraft of that capacity. Planning for the 757-100 was discontinued in March 1979.

Stretched variant: -300

Production of the 757 peaked at an annual rate of 100 aircraft in the early 1990s, during which time upgraded models came under consideration. For over a decade, the narrow-body twinjet had been its manufacturer's only single-aisle airliner without a stretched variant, and while rumors of a long-range 757-200X and stretched 757-300X persisted, no formal announcements had been made. European charter carriers were particularly interested in a higher-capacity version which could take better advantage of the 757's range. Besides meeting the needs of charter customers, a larger model would enable Boeing to match the passenger lift capabilities of the 767-200 with lower operating costs, and counter longer-range versions of the 185-seat Airbus A321, a new stretched variant of the A320 narrow-body airliner.

Side view of aircraft in flight with extended gear.
Condor 757-300 landing at Frankfurt Airport in July 2005. Condor became the first operator of the stretched 757-300 in March 1999.

In September 1996, following a launch order for 12 aircraft from charter carrier Condor, Boeing announced the stretched 757-300 at the Farnborough Airshow. The new model was a 23.4-foot (7.13 m) stretch of the 757-200, resulting in room for 50 more passengers and nearly 50 percent more cargo. The type's design phase was intended to be the shortest in its manufacturer's history, with 27 months from launch to certification. Due to development and cost concerns, radical upgrades such as a Next Generation 737-style advanced cockpit were not implemented. Instead, the stretched derivative received upgraded engines, enhanced avionics, and a redesigned interior. The first 757-300 rolled out on May 31, 1998, and completed its maiden flight on August 2, 1998. Following regulatory certification in January 1999, the type entered service with Condor on March 19, 1999.

The 757-300 was also ordered by American Trans Air, Arkia Israel Airlines, Continental Airlines, Icelandair, and Northwest Airlines. Sales for the variant remained slow, and ultimately totaled 55 of the -300. Boeing had targeted the 757-300 as a potential 767-200 replacement for two of its largest customers, American Airlines and United Airlines, but neither were in a financial position to commit to new aircraft. Overtures to other charter airlines also did not result in further orders. By November 1999, faced with diminishing sales and a reduced backlog despite the launch of the 757-300, Boeing began studying a decrease in 757 production rates.

Further developments

While the 757 program had been financially successful, declining sales in the early 2000s threatened its continued viability. Airlines were again gravitating toward smaller aircraft, now mainly the 737 and A320, because of their reduced financial risk. An airline industry downturn and the large number of relatively young 757s already in service also reduced customer demand. In 2000, spurred by interest from Air 2000 and Continental Airlines, Boeing reexamined the possibility of building a longer-range 757-200X. The proposed derivative would have featured auxiliary fuel tanks, plus wing and landing gear upgrades from the 757-300, resulting in a higher MTOW and a potential range increase to over 5,000 nautical miles (9,260 km; 5,750 mi). However, the proposal failed to garner any orders. In March 2001, Boeing delivered the first 757-200SF, a second-hand 757-200 converted for freighter use, to DHL Aviation. The 757-200SF marked the manufacturer's first foray into passenger-to-freighter conversions.

Front quarter view of twin-jet aircraft at takeoff, with extended gear.
Shanghai Airlines received the last production 757, B-2876, in November 2005.

Customer interest in new 757s continued to decline, and in 2003, a renewed sales campaign centered on the 757-300 and 757-200PF yielded only five new orders. In October 2003, following Continental Airlines' decision to switch its remaining 757-300 orders to the 737-800, Boeing announced the end of 757 production. The 1,050th and last example, a 757-200 built for Shanghai Airlines, rolled off the production line at the Renton factory on October 28, 2004, and was delivered on November 28, 2005, after several months of storage. With the conclusion of the 757 program, Boeing consolidated 737 assembly at its Renton factory, downsizing its facilities by 40 percent and shifting staff to different locations.

Since the end of production, most 757s have remained in service, mainly in the U.S. From 2004 to 2008, the average fuel cost for typical mid-range U.S. domestic 757 flights tripled, putting pressure on airlines to improve the fuel efficiency of their fleets. In May 2005, the FAA granted regulatory approval for manufacturer-sanctioned blended winglets from Aviation Partners Incorporated as a retrofit on the 757-200. The winglets improve fuel efficiency by five percent and increase range by 200 nautical miles (370 km; 230 mi) through the reduction of lift-induced drag. Continental Airlines was the first carrier to order winglets for the 757-200, and in February 2009 became the first operator of 757-300s with winglets. Aviation Partners further developed the blended winglet into the Scimitar Blended Winglet, which improves fuel burn by 1.1% over the original blended winglet. Icelandair and United Airlines have retrofitted their 757-200s with Scimitar Blended Winglets.

Side view of twin-jet aircraft ascending.
Continental Airlines 757-300 at Los Angeles International Airport in 2010 with blended winglets, which reduce lift-induced drag and improve fuel efficiency.

Prior to the United-Continental merger in 2010, the 757 remained the only narrow-body aircraft in use by the large fleets of all three U.S. legacy carriers: American Airlines, Delta Air Lines and United Airlines. During this period, the 757's capacity and range capabilities had remained largely unequaled among narrow-body airliners; when selecting replacement aircraft, airlines have had to either downsize to smaller single-aisle aircraft in production with fewer seats and less range such as the 737-900ER and A321, or upsize to the larger, longer-range 787 Dreamliner and A330-200 wide-body jets. The Tupolev Tu-204, a narrow-body twinjet introduced in 1989 with a design similar to the 757's, is offered in a 200-seat version and has seen limited production for mainly Russian customers. Within Boeing, the 215-seat, 3,200-nautical-mile (5,930 km; 3,680 mi) range 737-900ER had been regarded as the closest aircraft in production to the 757-200 after the latter ceased production. The Airbus A321neo LR and XLR variants finally provided a suitable 757-200 replacement on market in terms of range and capacity, and Icelandair and United Airlines have opted for the A321XLR to replace the Boeing 757 on their long-range routes.

Replacement aircraft

Main articles: Middle of the market and Boeing New Midsize Airplane

In February 2015, Boeing marketing Vice President Randy Tinseth stated that re-engining the 757 had been studied but there was no business case to support it. At the March 2015 ISTAT conference, Air Lease Corporation's Steven Udvar-Hazy predicted the 757 replacement would be a more capable, clean-sheet 767-like twin-aisle airplane capable of taking off from 7,000-foot (2,130 m) runways like New York LaGuardia, and Tinseth was focused on 20% more range and more capacity than the 757-200.

In May 2020, due to the ongoing 737 MAX issues and the economic crisis caused by the COVID-19 pandemic, Boeing set aside the clean-sheet design for the New Midsize Airplane (NMA) and began to look into a re-engined 757, dubbed the 757-Plus, which would compete with the Airbus A321XLR. The 757-Plus would need new engines, better efficiency, greater range, and more passenger capacity in order to satisfy the market that the NMA would have filled.

Design

Overhead view of twin-jet aircraft taxiing on airport tarmac.
Bird's eye view of Ethiopian Airlines 757-200 at London Heathrow Airport in March 2012

Overview

The 757 is a low-wing cantilever monoplane with a conventional tail unit featuring a single fin and rudder. Each wing features a supercritical cross-section and is equipped with five-panel leading edge slats, single- and double-slotted flaps, an outboard aileron, and six spoilers. The wings are largely identical across all 757 variants, swept at 25 degrees, and optimized for a cruising speed of Mach 0.8 (533 mph or 858 km/h). The reduced wing sweep eliminates the need for inboard ailerons, yet incurs little drag penalty on short and medium length routes, during which most of the flight is spent climbing or descending. The airframe further incorporates carbon-fiber reinforced plastic wing surfaces, Kevlar fairings and access panels, plus improved aluminum alloys, which together reduce overall weight by 2,100 pounds (950 kg).

To distribute the aircraft's weight on the ground, the 757 has a retractable tricycle landing gear with four wheels on each main gear and two for the nose gear. The landing gear was purposely designed to be taller than the company's previous narrow-body aircraft to provide ground clearance for stretched models. In 1982, the 757-200 became the first subsonic jetliner to offer longer lasting carbon brakes as a factory option, supplied by Dunlop. The stretched 757-300 features a retractable tailskid on its aft fuselage to prevent damage if the tail section contacts the runway surface during takeoff.

Besides common avionics and computer systems, the 757 shares its auxiliary power unit, electric power systems, flight deck, and hydraulic parts with the 767. Through operational commonality, 757 pilots can obtain a common type rating to fly the 767 and share the same seniority roster with pilots of either aircraft. This reduces costs for airlines that operate both twinjets.

Flight systems

View of a 757 cockpit with six paired color displays.
Two-crew cockpit of a Condor 757-300 with CRT displays

The 757's flight deck uses six Rockwell Collins CRT screens to display flight instrumentation, as well as an electronic flight instrument system (EFIS) and an engine indication and crew alerting system (EICAS). These systems allow the pilots to handle monitoring tasks previously performed by the flight engineer. An enhanced flight management system, improved over versions used on early 747s, automates navigation and other functions, while an automatic landing system facilitates CAT IIIb instrument landings in 490 feet (150 m) low visibility conditions. The inertial reference system (IRS) which debuted with the 757-200 was the first to feature laser-light gyros. On the 757-300, the upgraded flight deck features a Honeywell Pegasus flight management computer, enhanced EICAS, and updated software systems.

To accommodate the same flight deck design as the 767, the 757 has a more rounded nose section than previous narrow-body aircraft. The resulting space has unobstructed panel visibility and room for an observer seat. Similar pilot viewing angles as the 767 result from a downward sloped cockpit floor and the same forward cockpit windows.

Three independent hydraulic systems are installed on the 757, one powered by each engine, and the third using electric pumps. A ram air turbine is fitted to provide power for essential controls in the event of an emergency. A basic form of fly-by-wire facilitates spoiler operation, utilizing electric signaling instead of traditional control cables. The fly-by-wire system, shared with the 767, reduces weight and provides for the independent operation of individual spoilers. When equipped for extended-range operations, the 757 features a backup hydraulic motor generator and an additional cooling fan in the aircraft's electronics bay.

Interior

Cabin of the 757. There are six seats per row, with a single aisle separating the seats. Light shines through the side-wall windows and overhead lighting
Icelandair 757-200 with original cabin design, updated lighting, and six-abreast seating

The 757 interior allows seat arrangements of up to six per row with a single center aisle. Originally optimized for flights averaging two hours, the 757 features interior lighting and cabin architecture designs aimed at a more spacious impression. As on the 767, garment-bag-length overhead bins and a rear economy-class galley are standard equipment. The bins have twice the capacity as those on the preceding 727. To save weight, honeycomb sandwich is used for interior paneling and bins. Unlike previous evacuation slide designs which are not equipped for water landings, the 757's main exits feature combination slide rafts similar to those found on the 747. In the 1980s, Boeing altered the interior designs of its other narrow-body aircraft to be similar to that of the 757.

In 1998, the 757-300 debuted a redesigned interior derived from the Next Generation 737 and 777, including sculptured ceiling panels, indirect lighting, and larger overhead bins with an optional continuous handrail built into their base for the entire cabin length. Centerline storage containers mounted in the aisle ceiling for additional escape rafts and other emergency equipment were also added. The 757-300's interior later became an option on all new 757-200s. In 2000, with wheeled carry-on baggage becoming more popular, Delta Air Lines began installing overhead bin extensions on their 757-200s to provide additional storage space, and American Airlines did the same in 2001. The larger bins are part of aftermarket interior upgrades which include updated ceiling panels and lighting.

Variants

The 757 was produced in standard and stretched lengths. The original 757-200 debuted as a passenger model, and was subsequently developed into the 757-200PF and 757-200SF cargo models, as well as the convertible 757-200M variant. The stretched 757-300 was only available as a passenger model. When referring to different versions, Boeing, and airlines are known to collapse the model number (757) and the variant designator (e.g. -200 or -300) into a truncated form (e.g. "752" or "753"). The International Civil Aviation Organization (ICAO) classifies all variants based on the 757-200 under the code "B752", and the 757-300 is referred to as "B753" for air traffic control purposes.

757-200

An Icelandair 757-200 in August 2020 with Scimitar Blended Winglets

The 757-200, the original version of the aircraft, entered service with Eastern Air Lines in 1983. The type was produced with two different exit configurations, both with three standard cabin doors per side: the baseline version has a fourth, smaller cabin door on each side aft of the wings, and is certified for a maximum capacity of 239, while the alternate version has a pair of over-the-wing emergency exits on each side, and can seat a maximum of 224. The 757-200 was offered with a MTOW of up to 255,000 lb (116,000 kg); some airlines and publications have referred to higher gross weight versions with ETOPS certification as "757-200ERs", but this designation is not used by the manufacturer. Similarly, versions with winglets are sometimes called "757-200W" or "757-200WL". The first engine to power the 757-200, the Rolls-Royce RB211-535C, was succeeded by the upgraded RB211-535E4 in October 1984. Other engines used include the Rolls-Royce RB211-535E4B, along with the Pratt & Whitney PW2037 and Pratt & Whitney PW2000-37/40/43. Its range with full payload is 3,850 nautical miles (7,130 km; 4,430 mi).

Although designed for short and medium length routes, the 757-200 has since been used in a variety of roles ranging from high-frequency shuttle services to transatlantic routes. In 1992, after gaining ETOPS approval, American Trans Air launched 757-200 transpacific services between Tucson and Honolulu. Since the turn of the century, mainline U.S. carriers have increasingly deployed the type on transatlantic routes to Europe, and particularly to smaller cities where passenger volumes are insufficient for wide-body aircraft. Production for the 757-200 totaled 913 aircraft, making the type by far the most popular 757 model. At over 4,000 nautical miles (7,400 km; 4,600 mi), as of February 2015, the longest commercial route served by a 757 is United Airlines' Newark to Berlin flight; the aircraft assigned to this route cannot fly with full payload. United's 757s assigned to transatlantic routes are fitted with 169 seats. In July 2018, 611 of the 757-200 versions were in service.

757-200PF

Side quarter view of UPS twin-engine jet in flight, with gear extended
A UPS 757-200PF arriving at San Jose International Airport in August 2007

The 757-200PF, the production cargo version of the 757-200, entered service with UPS Airlines in 1987. Targeted at the overnight package delivery market, the freighter can carry up to 15 ULD containers or pallets on its main deck, for a volume of up to 6,600 cu ft (190 m), while its two lower holds can carry up to 1,830 cu ft (52 m) of bulk cargo. The maximum revenue payload capability is 87,700 lb (39,800 kg) including container weight. The 757-200PF is specified with a MTOW of 255,000 lb (116,000 kg) for maximal range performance; when fully loaded, the aircraft can fly up to 3,150 nautical miles (5,830 km; 3,620 mi). Because the freighter does not carry any passengers, it can operate transatlantic flights free of ETOPS restrictions. Power is provided by RB211-535E4B engines from Rolls-Royce, or PW2037 and PW2040 engines from Pratt & Whitney.

The freighter features a large, upward-opening main deck cargo door on its forward port-side fuselage. Next to this large cargo door is an exit door used by the pilots. All other emergency exits are omitted, and cabin windows and passenger amenities are not available. The main-deck cargo hold has a smooth fiberglass lining, and a fixed rigid barrier with a sliding access door serves as a restraint wall next to the flight deck. Both lower holds can be equipped with a telescoping baggage system to load custom-fitted cargo modules. When equipped for extended-range operations, UPS's 757-200PFs feature an upgraded auxiliary power unit, additional cargo bay fire suppression equipment, enhanced avionics, and an optional supplemental fuel tank in the aft lower hold. Production for the 757-200PF totaled 80 aircraft.

757-200SF/PCF (conversion)

Side view of yellow twin-engine jet in flight
DHL Aviation 757-200SF in flight in November 2008

The 757-200SF is a passenger to freighter conversion developed by Boeing following an order for 34 aircraft plus 10 options by DHL. It entered service in 2001 with the initial ex-British Airways aircraft converted at Boeing's Wichita site and subsequent blocks of aircraft converted by Israel Aerospace Industries and ST Aerospace Services. Modifications included the removal of passenger amenities, main deck structural reinforcement, addition of cargo handling flooring and the installation of a 757-200PF port-side cargo door in the forward fuselage. The forward two entry doors and lobby area of the passenger aircraft are retained resulting in a main deck cargo capacity of 14 full sized pallets and one smaller LD3. Environmental controls can be fitted for animal cargo such as racehorses, and rear exits and window pairs are retained on some aircraft to facilitate animal handlers. ST Aerospace continue to offer 14, 14.5 and 15 Unit load device variants of the SF in 2020.

In September 2006, FedEx Express announced a US$2.6 billion (~$3.78 billion in 2023) plan to acquire over 80 converted 757 freighters to replace its 727 fleet citing a 25% reduction in operating cost along with noise benefits.

The 757-200PCF is a passenger to freighter conversion, developed by Precision Conversions and certificated in 2005. Reported in 2019 to cost $5 million (~$5.88 million in 2023) per aircraft and similar to the SF it has 15 pallet positions. External differences include the removal of the forward passenger style doors and their replacement with a -200PF style small crew door. Internally the main cargo door is not integrated with the base aircraft hydraulic and warning systems and instead operates from a self-contained hydraulic system though powered by the aircraft electrics. By early 2020 a total of 120 757-200PCFs had been delivered.

757-200M/CB

Side view of airliner in flight, with extended landing gear
Nepal Airlines' sole 757-200M arriving at Dubai International Airport in April 2012

The 757-200M, a convertible version capable of carrying cargo and passengers on its main deck, entered service with Royal Nepal Airlines in 1988. Also known as the 757-200CB (Combi), the type retains the passenger windows and cabin doors of the 757-200, while adding a forward port-side cargo door in the manner of the 757-200PF. Kathmandu-based Royal Nepal Airlines, later renamed Nepal Airlines, included the convertible model as part of an order for two 757s in 1986.

Nepal Airlines ordered the 757-200M to fulfill a requirement for an aircraft that could carry mixed passenger and freight loads, and operate out of Tribhuvan International Airport, with its 4,400 ft (1,300 m) elevation, in the foothills of the Himalayas. Patterned after convertible variants of the 737 and 747, the 757-200M can carry two to four cargo pallets on its main deck, along with 123 to 148 passengers in the remaining cabin space. Nepal Airlines' 757-200M, which features Rolls-Royce RB211-535E4 engines and an increased MTOW of 240,000 lb (110,000 kg), was the only production example ordered. When cargo is carried on the main deck, the crew must include an additional dedicated, trained cargo firefighter.

In October 2010, Pemco World Air Services and Precision Conversions launched aftermarket conversion programs to modify 757-200s into 757 Combi aircraft. Vision Technologies Systems launched a similar program in December 2011. All three aftermarket conversions modify the forward portion of the aircraft to provide room for up to ten cargo pallets, while leaving the remaining space to fit around 45 to 58 passenger seats. This configuration is targeted at commercial charter flights which transport heavy equipment and personnel simultaneously. Customers for converted 757 Combi aircraft include the Air Transport Services Group, National Airlines, and North American Airlines.

757-300

United Airlines 757-300 taking off from Los Angeles International Airport in 2015

The 757-300, the stretched and longest version of the Boeing 757 variants, entered service with Condor in 1999. With a length of 178.7 ft (54.5 m), the type is the longest single-aisle twinjet ever built, coming in just shorter than the 187.4 ft (57.1 m) quad-jet DC-8-61/63. Designed to serve the charter airline market and provide a low-cost replacement for the 767-200, the 757-300 shares the basic design of the original 757, while extending the fuselage forward and aft of the wings. Six standard cabin doors, two smaller cabin doors behind the wings, plus a pair of over-the-wing emergency exits on each side, enable the 757-300 to have a maximum certified capacity of 295 passengers. A higher MTOW of 272,500 lb (123,600 kg) is specified, while fuel capacity remains unchanged; as a result, the stretched variant offers a maximum range of 3,395 nautical miles (6,288 km; 3,907 mi). Engines used on the type include the RB211-535E4B from Rolls-Royce and the PW2043 from Pratt & Whitney. Due to its greater length, the 757-300 features a retractable tailskid on its aft fuselage to avoid tailstrikes.

Condor ordered the stretched 757 to replace its McDonnell Douglas DC-10s and serve as low-cost, high-density transportation to holiday destinations such as the Canary Islands. Because tests showed that boarding the 757-300 could take up to eight minutes longer than the 757-200, Boeing and Condor developed zone-based boarding procedures to expedite loading and unloading times for the lengthened aircraft. The 757-300 has been operated by mainline carriers Continental Airlines (now part of United Airlines as of 2010), Northwest Airlines (now part of Delta Air Lines as of 2008), and Icelandair; other operators have included American Trans Air (the first North American operator), Arkia Israel Airlines, along with charter carriers Condor and Thomas Cook Airlines as of 2014. Production for the 757-300 totaled 55 aircraft. All 55 were in service in July 2018.

Government, military, and corporate

Government, military, and private customers have acquired the 757 for uses ranging from aeronautical testing and research to cargo and VIP transport. The 757-200, the most widely ordered version of the aircraft, has formed the basis for these applications. The first government operator of the 757 was the Mexican Air Force, which took delivery of a VIP-configured 757-200 in November 1987.

  • Airborne Research Integrated Experiments System (ARIES) – A NASA platform for air safety and operational research, was created in 1999 using the second production 757. The aircraft originally flew in the 757 flight test program before entering service with Eastern Air Lines. After NASA purchased the aircraft in 1994 to replace its 737-100 testbed, it was initially used to evaluate a hybrid laminar flow control system, avionics systems for the proposed Northrop YF-23 jet fighter, and the 777's fly-by-wire control system. Equipped with a flight deck research station, on-board laboratories, and two experimental flight decks, ARIES was used for evaluating weather information and landing approach systems, as well as runway friction tests. ARIES went into storage in 2006.
The C-32A, a variant of the 757, is the usual air transportation for the Vice President of the United States.
The C-32B is the only 757 known to be able to conduct aerial refueling.
  • C-32 – The United States Air Force operates six 757-200s under the designation C-32. Four are VIP-configured C-32A variants, whose mission is primarily transport of the Vice President of the United States, First Lady, and Secretary of State. The C-32As are powered by the Pratt & Whitney PW2000, and outfitted with a communication center, conference room, seating area, and private living quarters. The USAF also operates two 45-seat Rolls-Royce powered 757-200 aircraft, designated C-32B Gatekeeper, which provides airlift to special operations units and global emergency response teams. The C-32Bs are outfitted for any contingency, with an advanced communications suite, aerial refueling capabilities, extended fuel tanks, and an internal airstair. The C-32As are painted in the Raymond Loewy-designed blue and white livery used on most Special Air Mission aircraft, while the C-32Bs are painted gloss white with minimal identification markings. The first C-32s were acquired in 1998 and replaced C-137 Stratoliner transports.
The first 757 was modified into the F-22 Flying Test Bed.
  • F-22 Flying Testbed – The first 757 built was used in 1998 as a testbed for Lockheed Martin F-22 Raptor avionics and sensor integration. The Boeing-owned aircraft was fitted with a canard above its cockpit to simulate the jet fighter's wing sensor layout, along with a forward F-22 fuselage section with radar and other systems, and a 30-seat laboratory with communication, electronic warfare, identification, and navigation sensors.
  • Krueger flap and Natural Laminar Flow Insect Mitigation Test Program – As part of their ecoDemonstrator program, Boeing commenced a series of test flights on March 17, 2015, with a modified Boeing 757, incorporating new wing-leading-edge sections and an actively blown vertical tail. The left wing was modified to include a 6.7 m-span glove section supporting a variable-camber Krueger flap to be deployed during landing which protrudes just ahead of the leading edge. Although Krueger flaps have been tried before as insect-mitigation screens, previous designs caused additional drag; the newer design is variable-camber and designed to retract as seamlessly as possible into the lower wing surface. Increasing the use of natural laminar flow (NLF) on an aircraft wing has the potential to improve fuel burn by as much as 15%, but even small contaminants from insect remains will trip the flow from laminar to turbulent, destroying the performance benefit. The test flights have been supported by the European airline group TUI AG and conducted jointly with NASA as part of the agency's Environmentally Responsible Aviation (ERA) program. While the left wing tests the Krueger flaps, the right wing is being used to test coatings that prevent insects from adhering to the wing.
  • Active Flow Control System – On one aircraft Boeing has mounted 31 active flow jets mounted ahead of the rudder's leading edge. They receive air from the Auxiliary Power Unit (APU). Their purpose is to recover air flow that has separated from the rudder and redirect it to the rudder so that the rudder regains effectiveness, even at high deflection angles. The air exiting the APU is very hot, at 380 °F (193 °C), and is cooled by a heat exchanger mounted under the aft fuselage, which is connected to the ducts running along the front and back of the stabilizer's spars. This ensures an even air supply at all times.
Gray twinjet stationary on ice, with aft stairs and surrounding personnel.
In 2009, the Royal New Zealand Air Force flew one of its 757 Combis to Antarctica for the first time.

Operators

Main article: List of Boeing 757 operators
Delta Air Lines is the overall largest 757 operator, with a 757-200 shown here.
Side view of twin-jet aircraft in flight, showing "FedEx" lettering
A Boeing 757-200SF of FedEx Express, the variant's largest single operator.

As of 2018, the largest 757 operators were Delta Air Lines, FedEx Express and United Airlines; Delta Air Lines also was the largest overall, with a 757 fleet of 127 aircraft. American Airlines' 757 fleet of 142 aircraft was the largest until 2007, when the carrier retired Pratt & Whitney PW2000-powered models originating from its TWA acquisition to have an all Rolls-Royce RB211-powered 757 fleet. Delta subsequently acquired 17 former TWA/American Airlines 757s, and in October 2008, gained 45 more 757s from its acquisition of Northwest Airlines.

As of 2018, the cargo carrier with the most 757s was FedEx Express, which operated a 757-200F fleet of 111 aircraft. UPS Airlines operated a further 75 of the type, with DHL Aviation and its affiliated companies, DHL Air UK, DHL Latin America, European Air Transport Leipzig, and Blue Dart Aviation, combined operating 35 cargo 757s of various types in 2018.

Joint launch customer British Airways operated the 757-200 for 27 years before retiring the type in November 2010. To celebrate the fleet's retirement, the airline unveiled one of its last three 757-200s in a retro style livery on October 4, 2010, matching the color scheme that it introduced the aircraft into service with in 1983. Subsequently, the type remained in operation with the company's subsidiary, OpenSkies.

Over the duration of the program, 1,050 Boeing 757s were built with 1,049 aircraft delivered. The prototype 757 remained with the manufacturer for testing purposes. In August 2020, a total of 642 Boeing 757 aircraft of all variants were in commercial service with operators Delta Air Lines (127), FedEx Express (107), UPS Airlines (75), United Airlines (72), Icelandair (27) and others with fewer aircraft of the type.

Orders and deliveries

Year Total 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992
Orders 1,049 0 0 7 0 37 43 18 50 44 59 13 12 33 35
Deliveries 1,049 2 11 14 29 45 45 67 54 46 42 43 69 71 99
Year 1991 1990 1989 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978
Orders 50 95 166 148 46 13 45 2 26 2 3 64 0 38
Deliveries 80 77 51 48 40 35 36 18 25 2 0 0 0 0

Boeing 757 orders and deliveries (cumulative, by year):

 Orders

 Deliveries

  • Data from Boeing, through the end of production

Model summary

Model series ICAO code Orders Deliveries
757-200 B752 913 913
757-200M B752 1 1
757-200PF B752 80 80
757-300 B753 55 55
Total 1,049 1,049
  • Data from Boeing, through the end of production

Accidents and incidents

As of November 2023, the 757 has been involved in 47 aviation occurrences, including ten hull-loss accidents out of a total of 13 hull-losses. Nine incidents and 12 hijackings have resulted in a total of 575 occupant fatalities.

Accidents

The first fatal event involving the aircraft occurred on October 2, 1990, when a hijacked Xiamen Airlines 737 collided with a China Southern Airlines 757 on the runways of Guangzhou Baiyun International Airport, China, killing 46 of the 122 people on board. Two 757-200s were hijacked on September 11, 2001, during the September 11 attacks; hijackers crashed American Airlines Flight 77 into the Pentagon in Arlington, Virginia, killing all 64 on board and 125 on the ground, and United Airlines Flight 93 was also hijacked, and crashed near Shanksville, Pennsylvania, killing all 44 on board.

Side belly view of twin-jet aircraft in flight, banking to one side.
In January 2011, the FAA ordered fuselage inspections after an American Airlines 757 lost an upper skin panel in flight.

Accidents involving pilot error include American Airlines Flight 965, which crashed into a mountain in Buga, Colombia, on December 20, 1995, killing 151 passengers and all eight crew members with four survivors, and a dog, and the mid-air collision of DHL Flight 611 near Überlingen, Baden-Württemberg, Germany, on July 1, 2002, with the loss of the two people on board plus 69 on a Bashkirian Airlines Tupolev Tu-154. The American Airlines Flight 965 crash was blamed on navigational errors by the crew, while the collision of DHL Flight 611 involved air traffic control errors, but was mainly blamed on the Tupolev's crew not following a TCAS resolution advisory. Accidents attributed to spatial disorientation due to improperly maintained instruments include Birgenair Flight 301 on February 6, 1996, which crashed into the ocean near Puerto Plata, Dominican Republic, with the loss of all 189 passengers and crew, and Aeroperú Flight 603 on October 2, 1996, which crashed into the ocean off the coast of Pasamayo, Peru, with the loss of all 70 on board. In the Birgenair accident, investigators found that the aircraft had been stored without the necessary covers for its pitot tube sensors, thus allowing insects and debris to collect within, while in the Aeroperú accident, protective tape covering static vent sensors had not been removed.

On September 14, 1999, Britannia Airways Flight 226A crash landed near Girona-Costa Brava Airport, Spain, during a thunderstorm; the 757's fuselage broke into several pieces. The 245 occupants evacuated successfully, with 40 requiring hospital treatment; one passenger died five days later of unsuspected internal injuries. On October 25, 2010, American Airlines Flight 1640, a 757 flying between Miami and Boston, safely returned to Miami after suffering the loss of a 2 ft (60 cm) fuselage section at an altitude of approximately 31,000 feet (9,000 m). After investigating the incident, the FAA ordered all 757 operators in the U.S. to regularly inspect upper fuselage sections of their aircraft for structural fatigue.

Incidents

Two private aircraft crashes were blamed on wake turbulence emanating from 757s. On December 18, 1992, a Cessna Citation crashed near Billings Logan International Airport in Montana, killing all six aboard, and on December 15, 1993, an IAI Westwind crashed near John Wayne Airport in California, killing all five aboard. Both airplanes had been flying less than 3 nautical miles (6 km; 3 mi) behind a 757. The FAA subsequently increased the required separation between small aircraft and 757s from 4 nautical miles (7.4 km; 4.6 mi) to 5 nautical miles (9.3 km; 5.8 mi).

On April 7, 2022, a DHL Boeing 757 aircraft operating Flight 7216 crash landed at San Jose, Costa Rica after attempting an emergency landing due to a hydraulic failure. Both crew members survived without injuries; the incident is under investigation.

Aircraft on display

N608DA at Pinal Airpark in Arizona, under restoration in February 2014 for later display at the Delta Flight Museum

A Delta Air Lines 757-200, registered as N608DA, is on display at the Delta Flight Museum in Atlanta, Georgia. The aircraft was the sixty-fourth example built. Prior to being moved to its permanent location, the aircraft was repainted into Delta's 'Widget' livery, the livery it wore when it was originally delivered; it is now on static display at the museum entrance.

Specifications

Comparison chart showing front, side, and dorsal views of the 757
A comparison of the different 757 variants
Variant 757-200 757-200F 757-300
Cockpit crew Two
2-class seating 200 (12F+188Y) 5 max 243 (12F+231Y)
1-class seating 219–239 max 275–295 max
Cargo volume 1,670 cu ft (47.3 m) 6,600 cu ft (187 m) 2,370 cu ft (61.7 m)
Width 148 in (3.76 m) fuselage,
139.3 in (3.54 m) cabin
Length 155 ft 3 in (47.3 m) 178 ft 7 in (54.4 m)
Height 44 ft 6 in (13.6 m)
Wing 124 ft 10 in (38.0 m) span, 1,994 sq ft (185.25 m) area, 25° sweep, 7.8 AR
MTOW 255,000 lb (115,660 kg) 273,000 lb (123,830 kg)
Max. Payload 57,160 lb (25,920 kg) 84,420 lb (38,290 kg) 68,140 lb (30,910 kg)
OEW 128,840 lb (58,440 kg) 115,580 lb (52,430 kg) 141,860 lb (64,340 kg)
Fuel capacity 11,489 US gal (43,490 L) 11,276 US gal (42,680 L) 11,466 US gal (43,400 L)
Speed Cruise: Mach .8 (461 kn; 854 km/h; 531 mph),
Max.: Mach .86 (496 kn; 918 km/h; 571 mph)
Range 3,915 nmi (7,250 km; 4,505 mi) 2,935 nmi (5,435 km; 3,378 mi) 3,400 nmi (6,295 km; 3,900 mi)
Takeoff 6,800 ft (2,070 m) 6,900 ft (2,103 m) 8,550 ft (2,605 m)
Ceiling 42,650 ft (13,000 m)
Engines (×2) 40,200–43,500 lbf (179–193 kN) Rolls-Royce RB211-535-E4(B)
36,600–42,600 lbf (163–189 kN) Pratt & Whitney PW2000-37/40/43

See also

Related development

Aircraft of comparable role, configuration, and era

Related lists

References

  1. ^ The maximum depends on the type of exit doors equipped.
  2. 200 passengers
  3. 72,210 lb (32,755 kg) payload
  4. 243 passengers
  5. MTOW, sea level, 86 °F (30 °C), RB211-535E4B engines

Notes

  1. ^ "Boeing Marks Completion of its 757 Commercial Airplane Program". Boeing. October 28, 2004. Archived from the original on March 3, 2016. Retrieved September 26, 2014.
  2. ^ "World Airline Census 2018". Flightglobal. August 21, 2018. Archived from the original on March 11, 2024. Retrieved March 6, 2020.
  3. ^ "Boeing 757 hull-losses". Aviation Safety Network. December 3, 2023. Archived from the original on October 25, 2012. Retrieved August 6, 2009.
  4. ^ Norris & Wagner 1998, pp. 143–45.
  5. Eden 2008, p. 72.
  6. Norris & Wagner 1999, p. 12.
  7. ^ Norris & Wagner 1998, p. 144.
  8. ^ Norris & Wagner 1999, pp. 19–20.
  9. Norris & Wagner 1999, pp. 18–19.
  10. ^ Davies 2000, p. 103.
  11. ^ Norris & Wagner 1998, pp. 145–47.
  12. ^ Eden 2008, p. 98.
  13. ^ Norris & Wagner 1999, pp. 95–96.
  14. ^ Birtles 2001, p. 12.
  15. ^ Norris & Wagner 1998, p. 145.
  16. ^ Birtles 2001, pp. 16–17.
  17. ^ "Boeing 727 Specifications". Boeing. Archived from the original on October 27, 2014. Retrieved October 26, 2014.
  18. Ostrower, Jon, and Wall, Robert, "Boeing weighs options to reprise aging 757s", Wall Street Journal, February 11, 2015, pp. B1–2.
  19. ^ Velupillai, David (January 2, 1982). "Boeing 757: introducing the big-fan narrowbody". Flight International. pp. 12, 15. Archived from the original on February 12, 2019. Retrieved February 2, 2011.
  20. ^ Velupillai 1982, p. 19.
  21. Davies 1990, p. 102.
  22. Eden 2008, pp. 98–99.
  23. Birtles 2001, pp. 12–13.
  24. ^ Norris & Wagner 1999, p. 23.
  25. ^ Velupillai 1982, p. 15.
  26. "Boeing refine 757 flight deck". Flight International. October 6, 1979. p. 1098. Archived from the original on January 10, 2018. Retrieved January 9, 2018.
  27. Norris & Wagner 1998, pp. 151–53.
  28. ^ "757 Passenger" (PDF). Boeing. 2007. Archived (PDF) from the original on March 29, 2018. Retrieved December 1, 2015.
  29. ^ "757 Airplane Characteristics for Airport Planning" (PDF). Boeing. August 2002. p. 21. Archived (PDF) from the original on May 16, 2018. Retrieved November 11, 2016.
  30. Sharpe & Shaw 2001, pp. 9, 17.
  31. Davies 2003, p. 96.
  32. Birtles 2001, p. 15.
  33. Birtles 2001, p. 32.
  34. ^ Velupillai 1982, pp. 13, 20.
  35. Ramsden, J. M. (April 29, 1978). "Europe's Jet v. Boeing's 757". Flight International. Archived from the original on May 7, 2013. Retrieved June 20, 2012.
  36. ^ Velupillai 1982, p. 20.
  37. ^ Eden 2008, p. 99.
  38. Birtles 2001, pp. 22–23.
  39. ^ Norris & Wagner 1998, pp. 161–62.
  40. ^ Sweetman, Bill (March 20, 1982). "Boeing tests the twins". Flight International. pp. 676, 685–86. Archived from the original on June 19, 2018. Retrieved July 15, 2011.
  41. ^ Birtles 2001, p. 14.
  42. ^ Birtles 2001, pp. 22–26.
  43. ^ Rinearson, Peter (June 19–26, 1983). "Making It Fly". Seattle Times. Archived from the original on October 11, 2012. Retrieved October 26, 2014.
  44. ^ "Boeing 757-200 Background". Boeing. Archived from the original on October 27, 2014. Retrieved October 26, 2014.
  45. ^ "757 Model Summary". Boeing. April 2011. Archived from the original on January 3, 2016. Retrieved January 27, 2011.
  46. Birtles 2001, p. 49.
  47. ^ "Boeing 757: six months in service". Flight International. July 28, 1983. pp. 195–201. Archived from the original on July 23, 2012. Retrieved February 2, 2011.
  48. Birtles 2001, pp. 50–51.
  49. ^ Birtles 2001, pp. 28–29.
  50. ^ Eden 2008, p. 100.
  51. Dormer, Ian (June 4, 1988). "American and United buy 757s". Flight International. Archived from the original on July 24, 2012. Retrieved July 15, 2011.
  52. ^ Birtles 2001, pp. 53, 55.
  53. Birtles 2001, pp. 26, 52.
  54. Birtles 2001, pp. 48–49.
  55. ^ Birtles 2001, p. 62.
  56. Birtles 2001, p. 6.
  57. Birtles 2001, p. 25.
  58. Birtles 2001, p. 50.
  59. Birtles 2001, p. 54.
  60. ^ Norris & Wagner 1998, pp. 159, 162.
  61. ^ Birtles 2001, p. 26.
  62. ^ "Concept to Reality – Wake-Vortex Hazard". National Aeronautics and Space Administration. Archived from the original on July 31, 2009. Retrieved July 29, 2011.
  63. ^ Maksel, Rebecca (May 27, 2008). "Is the Boeing 757 a threat to other airliners?". Air & Space. Archived from the original on May 11, 2014. Retrieved March 25, 2012.
  64. "New York/New Jersey/Philadelphia Metropolitan Airspace Redesign Project – FAA's Wake Turbulence Separation Standards" (PDF). Federal Aviation Administration. p. 1. Archived (PDF) from the original on June 7, 2011. Retrieved July 29, 2011.
  65. Green, William; Swanborough, Gordon; Mowinski, John (1987). Modern Commercial Aircraft. Portland House. p. 80. ISBN 0517633698.
  66. Richard O'Lone (1980). "Study Shows Air's Cost Over Auto". Vol. 112. Aviation Week & Space Technology. p. 12.
  67. Birtles 2001, p. 37.
  68. ^ Norris & Wagner 1999, pp. 96–98.
  69. Eden 2008, p. 25.
  70. ^ "Analysing the options for 757 replacement" (PDF). Aircraft Commerce. August 2005. pp. 28, 30–31. Archived from the original (PDF) on September 17, 2012. Retrieved December 19, 2011.
  71. ^ Eden 2008, p. 101.
  72. ^ Norris & Wagner 1999, pp. 101–02.
  73. Norris, Guy (August 27, 2002). "Fix sought as 757 backlog nosedives". Flight International. Archived from the original on July 23, 2012. Retrieved December 19, 2011.
  74. ^ Norris, Guy (October 21, 2003). "Sales drought takes 757's scalp". Flight International. Archived from the original on November 5, 2012. Retrieved July 27, 2011.
  75. ^ Norris, Guy (November 17, 1999). "Boeing looks at 757 slowdown". Flight International. Archived from the original on May 20, 2013. Retrieved July 27, 2011.
  76. ^ McMillin, Molly (August 10, 2004). "Wichita's final 757 to take a bow". Wichita Eagle. Archived from the original on April 27, 2005. Retrieved April 10, 2012.
  77. Kingsley-Jones, Max (April 11, 2003). "Omens good for old 757s despite production axe". Flight International. Archived from the original on May 22, 2013. Retrieved July 27, 2011.
  78. ^ Birtles 2001, p. 31.
  79. ^ "Converted Boeing 757-200 freighter enters service with DHL". Flight International. March 20, 2001. Archived from the original on May 22, 2013. Retrieved July 27, 2011.
  80. ^ "Very special freighters". Flight International. September 19, 2000. Archived from the original on November 5, 2012. Retrieved July 27, 2011.
  81. "Aircraft Profiles: Boeing 757". Flight International. Archived from the original on July 24, 2012. Retrieved April 1, 2012.
  82. Steinke, Sebastian (May 2005). "Last 757 Leaves Final Assembly". Flug Revue. Archived from the original on February 16, 2008.
  83. Norris, Guy (February 24, 2004). "Boeing consolidates at Renton as 757 line ends". Flight International. Archived from the original on July 24, 2012. Retrieved December 19, 2011.
  84. "Boeing's last 757 rolls off the assembly line". The Taipei Times. October 31, 2004. Archived from the original on October 10, 2012. Retrieved July 27, 2011.
  85. "$3.3 Million a Day – That's How Much American Airlines is Losing in the Era of Insane Fuel Prices." Fortune, May 12, 2008, p. 94.
  86. Freitag, William; Schulze, Terry (2009). "Blended winglets improve performance" (PDF). Aero Magazine. pp. 9, 12. Archived (PDF) from the original on June 29, 2011. Retrieved July 27, 2011.
  87. Faye, Robert; Laprete, Robert; Winter, Michael (2002). "Blended Winglets". Aero Magazine. Archived from the original on June 29, 2011. Retrieved July 27, 2011.
  88. "As fuel costs spiral, winglets are a simple way for airlines to cut fuel consumption". Flight International. June 27, 2008. Archived from the original on July 3, 2008. Retrieved July 27, 2011.
  89. Norris, Guy (February 4, 2009). "Continental Receives First Wingletted 757-300". Aviation Week & Space Technology. Archived from the original on August 7, 2016. Retrieved July 27, 2011.
  90. "Icelandair the First to Operate 757-200 Scimitar Blended Winglets in Europe" (PDF). February 15, 2017. Retrieved September 20, 2024.
  91. "United Moves Forward with 757 Scimitar Winglets Installation". AirlineGeeks. October 27, 2016. Retrieved September 20, 2024.
  92. ^ "World Airliner Census" (PDF). Flight International. 2014. Archived (PDF) from the original on March 22, 2015. Retrieved January 13, 2015.
  93. Ostrower, Jon (September 5, 2010). "Icelandair's 757 replacement dilemma". Flight International. Archived from the original on September 9, 2010. Retrieved July 3, 2015.
  94. Wallace, James (February 20, 2008). "Push is on for a midrange Dreamliner". Seattle Post-Intelligencer. Archived from the original on October 17, 2012. Retrieved June 7, 2011.
  95. "Tupolev Takes on Boeing". Flight International. February 26, 1991. Archived from the original on July 24, 2012. Retrieved May 2, 2012.
  96. Eden 2008, p. 186.
  97. Karnozov, Vladimir (April 27, 2011). "Tu-204SM struggles as key supporter backs away". Flight International. Archived from the original on July 24, 2012. Retrieved May 3, 2012.
  98. Schofield, Adrian (July 20, 2005). "Boeing's 737-900ER Seen As Direct Competitor To A321". Aviation Week & Space Technology. Archived from the original on March 22, 2012. Retrieved July 3, 2015.
  99. "Icelandair signs deal for 13 Airbus A321XLR as it replaces Boeing 757s", Reuters, April 7, 2023, retrieved September 20, 2024
  100. Taylor Rains (August 25, 2024), United executive said the new Airbus A321XLR will replace Boeing 757 routes and open new ones, retrieved September 20, 2024
  101. Stephen Trimble (February 11, 2015), "Boeing rejects business case for 757 re-engining", Flight Global, archived from the original on February 12, 2015, retrieved March 10, 2015
  102. Stephen Trimble (March 11, 2015). "Udvar-Hazy reveals preferences for Boeing's next project". Flight Global. Archived from the original on March 12, 2015. Retrieved March 12, 2015.
  103. "Planemakers slow plans for new jets as they focus on survival". Reuters. April 28, 2020. Archived from the original on May 9, 2020. Retrieved May 15, 2020.
  104. Velupillai 1982, pp. 15–18.
  105. Birtles 2001, pp. 18–19.
  106. Norris & Wagner 1998, p. 153.
  107. ^ Birtles 2001, p. 47.
  108. Norris & Wagner 1998, p. 150.
  109. "Carbon brakes for 757". Flight International. July 17, 1982. Archived from the original on July 24, 2012. Retrieved February 2, 2011.
  110. ^ Norris & Wagner 1999, p. 99.
  111. Velupillai 1982, pp. 14–15.
  112. Wells & Clarence 2004, p. 252.
  113. Birtles 2001, pp. 44, 50.
  114. Birtles 2001, pp. 43–44.
  115. ^ Norris & Wagner 1998, p. 161.
  116. Velupillai, David (August 8, 1981). "Boeing 767: The new fuel saver". Flight International. p. 440. Archived from the original on November 5, 2018. Retrieved July 30, 2011.
  117. Pace, Eric (May 24, 1981). "How Airline Cabins are being Reshaped". The New York Times. Archived from the original on May 24, 2018. Retrieved February 1, 2011.
  118. "Boeing's Big, Quiet 737-300". Flight International. February 12, 1982. Archived from the original on July 24, 2012. Retrieved July 27, 2011.
  119. ^ Norris & Wagner 1999, p. 101.
  120. Norris & Wagner 1999, p. 112.
  121. "Icelandair Takes First Boeing 757-200 with New Interior". Boeing. April 25, 2000. Archived from the original on June 19, 2000. Retrieved July 3, 2015.
  122. "Delta Air Lines Announces Installation Of Overhead Bin Extensions". Delta Air Lines. May 15, 2000. Archived from the original on December 1, 2017. Retrieved June 7, 2012.
  123. "American's First Aircraft Featuring Bigger Overhead Bins Takes to the Skies". American Airlines. January 17, 2001. Archived from the original on December 1, 2017. Retrieved August 18, 2011.
  124. "Heath Tecna to unveil Project Amber for B737s and B757s". Northwest Business Monthly. 2011. Archived from the original on March 20, 2012. Retrieved July 3, 2015.
  125. "Heath Tecna unveils Project Amber interior". Aircraft Interiors International. Archived from the original on July 4, 2015. Retrieved July 3, 2015.
  126. ^ Birtles 2001, p. 38.
  127. "Boeing 757-300 Background". Boeing. Archived from the original on November 4, 2013. Retrieved July 3, 2015.
  128. "Airplane Types and seating maps". Delta Air Lines. Archived from the original on July 20, 2006. Retrieved April 3, 2012.
  129. ^ "ICAO Document 8643". International Civil Aviation Organization. Archived from the original on June 7, 2017. Retrieved April 1, 2012.
  130. "FAA Type Certificate Sheet A2NM" (PDF). Federal Aviation Administration. March 8, 2002. p. 5. Archived from the original (PDF) on January 3, 2016. Retrieved July 21, 2011.
  131. "757-200ER (with BusinessElite version 2) – 75E". Delta Air Lines. Archived from the original on April 13, 2012. Retrieved April 8, 2012.
  132. Veronico & Dunn 2004, p. 97.
  133. ^ "Boeing 757 incidents". Aviation Safety Network. December 3, 2023. Archived from the original on October 25, 2012. Retrieved August 6, 2009.
  134. Flottau, Jens; Norris, Guy (January 15, 2015). "Airbus Sees 1,000-Aircraft Market For A321LR". Aviation Week & Space Technology. Archived from the original on April 14, 2015. Retrieved May 9, 2015.
  135. Birtles 2001, p. 41.
  136. ^ Flottau, Jens, and Guy Norris, "Filling the gaps", Aviation Week & Space Technology, January 15 – February 1, 2015, p. 24. online version Archived April 14, 2015, at the Wayback Machine
  137. Higgins, Michelle (July 29, 2007). "The Flights Are Long. The Planes Are Cramped". The New York Times. Archived from the original on May 16, 2012. Retrieved April 4, 2012.
  138. ^ "757 Freighter" (PDF). Boeing. 2007. Archived (PDF) from the original on April 17, 2018. Retrieved November 11, 2016.
  139. Norris & Wagner 1998, p. 162.
  140. ^ Bowers 1989, p. 540.
  141. Kane 2003, pp. 551–52.
  142. "Boeing, ST Aero deliver 757 special freighter". November 19, 2001. Archived from the original on December 3, 2021. Retrieved February 18, 2021.
  143. "757 SF makes first flight". Boeing. January 15, 2001. Archived from the original on July 24, 2021. Retrieved February 18, 2021.
  144. Kingsley-Jones, Max (October 13, 1999). "Boeing launches turnkey initiative with DHL freighter conversion contract". Flight International. Archived from the original on July 23, 2012. Retrieved April 3, 2012.
  145. "Blue Dart inducts two Boeing 757-200 freighters". Business Standard. May 31, 2006. Retrieved June 2, 2012.
  146. "Tasman Cargo Airlines 757-200F". Tasman Cargo Airlines. Archived from the original on January 3, 2016. Retrieved June 2, 2012.
  147. "ST Aerospace Brochure" (PDF). ST Engineering. Retrieved February 16, 2021.
  148. Torbenson, Eric; Gunsalus, James (September 26, 2006). "FedEx to spend $2.6 billion to replace its fleet of 727s". Bloomberg. Archived from the original on April 15, 2012. Retrieved April 1, 2012.
  149. "Passenger to Freighter Aircraft Conversions". precisionconversions.com. Archived from the original on January 18, 2014. Retrieved April 1, 2015.
  150. Engel, Samuel (April 2, 2019). "amazon-and-alibaba-have-saved-a-legacy-boeing-aircraft-before-will-it-happen-again". Forbes. Archived from the original on April 12, 2023. Retrieved February 16, 2021.
  151. Lee, Jeff (April 17, 2020). "Precision conversion now total 120". Cargo Facts. Archived from the original on January 19, 2021. Retrieved February 16, 2021.
  152. "World Airliner Census". Flight International. December 17, 1988. p. 58. Archived from the original on July 24, 2012. Retrieved April 8, 2012.
  153. ^ "Type Certificate Data Sheet" (PDF). FAA. February 16, 2016. Archived from the original (PDF) on October 30, 2019. Retrieved November 11, 2016.
  154. Norris & Wagner 1998, p. 146
  155. ^ "Pemco launches 757-200 Combi conversation program". Aviation Week & Space Technology. October 30, 2010. Archived from the original on November 20, 2010. Retrieved October 30, 2010.
  156. ^ Sobie, Brendan (October 21, 2010). "Precision follows Pemco in launching 757 combi conversion". Flight International. Archived from the original on December 29, 2011. Retrieved April 3, 2012.
  157. ^ "North American Airlines and VT Systems plan conversion of Boeing 757-200 to Combi configuration". Global Aviation Holdings Inc. December 17, 2010. Archived from the original on July 4, 2015. Retrieved July 3, 2015.
  158. ^ "757-300 Technical Characteristics". Boeing. Archived from the original on November 2, 2013. Retrieved July 3, 2015.
  159. "P&W-powered 757-300 tests begin". Flight International. February 19, 2002. Archived from the original on May 6, 2013. Retrieved June 17, 2012.
  160. Norris, Guy (December 2, 1998). "Testing a stretch". Flight International. Archived from the original on May 7, 2013. Retrieved June 8, 2012.
  161. Norris & Wagner 1999, p. 96.
  162. "American Trans Air Receives First and Second Boeing 757-300s". Boeing. August 8, 2001. Archived from the original on September 28, 2013. Retrieved August 31, 2012.
  163. ^ Birtles 2001, p. 126.
  164. ^ "ARIES: NASA's Flying Lab Takes Wing". National Aeronautics and Space Administration. December 1999. Archived from the original on May 6, 2013. Retrieved March 25, 2012.
  165. Adams, Denise (August 11, 2006). "State of the Center Updated at Town Meeting". National Aeronautics and Space Administration. Archived from the original on November 24, 2013. Retrieved April 6, 2012.
  166. ^ "Factsheets: C-32". United States Air Force. Archived from the original on June 13, 2009. Retrieved July 3, 2015.
  167. "Air National Guard 2014 Weapons System Modernization Priorities" Archived November 30, 2021, at the Wayback Machine. United States Air National Guard. 2014.
  168. United States General Accounting Office 2003, p. 197.
  169. "Midair Collision Avoidance Guide" (PDF). 305th and 514th Air Mobility Wings, McGuire Air Force Base. September 2007. pp. 5, 8, 12. Archived from the original (PDF) on March 13, 2013. Retrieved June 2, 2012.
  170. ^ Birtles 2001, pp. 28, 56.
  171. Pace 1999, pp. 26–28.
  172. "757 EcoDemo Focuses On Laminar And Active Flow". Aviation Week. March 23, 2015. Archived from the original on October 2, 2017. Retrieved March 23, 2015.
  173. Norris, Guy, Bug smasher, Aviation Week & Space Technology, March 30 – April 12, 2015, p.37
  174. Norris, Guy, Bug Smasher, Aviation Week & Space Technology, March 30 – April 12, 2015, p.37
  175. ^ "RNZAF – Boeing 757". Royal New Zealand Air Force. Archived from the original on August 7, 2011. Retrieved July 21, 2011.
  176. Smith, Anneke (June 21, 2024). "Inside the Defence Force's 757 planes: Breaking down the details". RNZ. Retrieved June 21, 2024.
  177. Field, Michael (July 8, 2011). "Air force plane struck by lightning". Fairfax News. Archived from the original on September 7, 2011. Retrieved April 6, 2012.
  178. Field, Michael (December 17, 2009). "RNZAF jet lands on ice". Fairfax News. Archived from the original on September 28, 2013. Retrieved April 6, 2012.
  179. Braslavsky, Guido (April 20, 2009). "El avión de Cristina se averió y tuvo que aterrizar en Caracas". El País (in Spanish). Archived from the original on June 14, 2012. Retrieved August 13, 2011.
  180. Guevera, Íñigo (2009). "Defensa Nacional – Ejército, Fuerza Aérea y Marina" (PDF) (in Spanish). Seguridad con Democracia. p. 304. Archived from the original (PDF) on March 28, 2012. Retrieved July 3, 2015.
  181. Birtles 2001, p. 52.
  182. "Airline profile: Saudi Arabian". Avia Magazine. Archived from the original on January 1, 2019. Retrieved July 21, 2011.
  183. "Check out 'Trump Force One' — Donald Trump's personal Boeing airliner". Business Insider. Archived from the original on January 6, 2017. Retrieved January 16, 2017.
  184. Robinson, Tim (September 17, 2021). "Defence back on show - DSEI 2021 report". Royal Aeronautical Society. Archived from the original on September 17, 2021. Retrieved September 17, 2021.
  185. "World Airliner Census". Flight International. August 21–27, 2007. pp. 46–47. Archived from the original on July 23, 2012. Retrieved July 24, 2011.
  186. "American set to return 19 jets when leases up." Fort Worth Star-Telegram, June 8, 2006, p. C1.
  187. "Delta Museum – Boeing B-757". Delta Air Lines Air Transport Heritage Museum. Archived from the original on February 6, 2012. Retrieved August 18, 2011.
  188. "DHL Express Division – Aviation". DHL Aviation. Archived from the original on December 20, 2012. Retrieved May 6, 2012.
  189. "DHL & Lemuir Consolidate Logistics Business in India". DHL Aviation. May 24, 2007. Archived from the original on January 22, 2011. Retrieved July 3, 2015.
  190. Cohen, Aubrey (October 5, 2010). "British Airways revives 1983 livery for retiring Boeing 757". Seattle Post-Intelligencer. Archived from the original on November 1, 2013. Retrieved April 1, 2012.
  191. Kaminski-Morrow, David (May 10, 2010). "British Airways unveils 'retro' livery as 757 era ends". Flight International. Archived from the original on October 8, 2010. Retrieved July 21, 2011.
  192. Kingsley-Jones, Max (October 3, 2010). "BA goes retro for 757 bye-bye". Aviation Week & Space Technology. Archived from the original on October 18, 2012. Retrieved July 3, 2015.
  193. "Boeing 757 Statistics". Aviation Safety Network. December 3, 2023. Archived from the original on October 15, 2018. Retrieved November 16, 2018.
  194. ^ Birtles 2001, pp. 102–03.
  195. "Threats and Responses; Excerpts from the Report of the Sept. 11 Commission: 'A Unity of Purpose'". The New York Times. July 23, 2004. Archived from the original on May 6, 2013. Retrieved January 22, 2011.
  196. ^ Karp, Aaron (January 10, 2011). "FAA issues AD requiring 'repetitive' 757 fuselage skin inspections". Aviation Week & Space Technology. Archived from the original on January 11, 2011. Retrieved March 25, 2012.
  197. "American Airlines jet crashes in the Andes". CNN. December 21, 1995. Archived from the original on September 28, 2013. Retrieved September 9, 2011.
  198. ^ "Investigation Report AX001-1-2" (PDF). German Federal Bureau of Aircraft Accidents Investigation. May 2, 2004. p. 110. Archived from the original (PDF) on January 23, 2007. Retrieved July 3, 2015.
  199. Pope, Hugh (February 10, 1996). "Crash plane may not have been serviced". The Independent. Archived from the original on September 23, 2011. Retrieved November 19, 2009.
  200. "Plane crash Britons due home". BBC News. September 15, 1999. Archived from the original on January 19, 2009. Retrieved June 17, 2018.
  201. CAA SRG Safety Plan 2008 Archived June 6, 2011, at the Wayback Machine (PDF file)
  202. "Officials investigate what caused hole in American jet's fuselage". Dallas Morning News. October 29, 2010. Archived from the original on October 20, 2012. Retrieved June 7, 2011.
  203. "FAA Notice N JO 7110.525" (PDF). Archived (PDF) from the original on February 10, 2023. Retrieved February 10, 2023.
  204. "FAA Order JO 7110.65Z - Air Traffic Control. Section 5. Radar Separation". www.faa.gov. Archived from the original on February 10, 2023. Retrieved February 10, 2023.
  205. "DHL cargo plane splits in two after crash landing at Costa Rica airport". The Guardian. Reuters. April 8, 2022. Archived from the original on April 8, 2022. Retrieved April 8, 2022.
  206. "Video: Cargo plane splits in two after emergency landing in Costa Rica". Gulf News. April 8, 2022. Archived from the original on April 8, 2022. Retrieved April 8, 2022.
  207. ^ Meng, Tiffany (April 28, 2014). "Two new planes". Delta Flight Museum. Archived from the original on August 24, 2015. Retrieved May 18, 2015.
  208. Birtles 1999, pp. 55, 116.
  209. Civil Jet Aircraft Design. Elsevier. January 1999. Aircraft Data File. Archived from the original on November 5, 2016. Retrieved November 11, 2016.
  210. Boeing Jetliners. Barnes & Noble Books. 1998. p. 71. ISBN 978-1-61060-706-3. Archived from the original on March 11, 2024. Retrieved November 20, 2019.
  211. "TWA looks at stretched 757s to replace ageing 767 fleet". Flight International. January 11, 2000. Archived from the original on April 17, 2017. Retrieved April 16, 2017.

Bibliography

  • Birtles, Philip (1999). Modern Civil Aircraft: 6, Boeing 757/767/777. Third Edition. London: Ian Allan Publishing. ISBN 0-7110-2665-3.
  • Birtles, Philip (2001). Boeing 757. Osceola, Wisconsin: MBI Publishing. ISBN 978-0-7603-1123-3.
  • Bowers, Peter M. (1989). Boeing Aircraft Since 1916. Annapolis, Maryland: Naval Institute Press. ISBN 978-0-87021-037-2.
  • Davies, R. E. G. (1990). Delta, an Airline and Its Aircraft: The Illustrated History of a Major U.S. Airline and the People who Made it. Miami, Florida: Paladwr Press. ISBN 0-9626483-0-2.
  • Davies, R. E. G. (2003). Eastern: an Airline and Its Aircraft. McLean, Virginia: Paladwr Press. ISBN 1-888962-19-4.
  • Davies, R. E. G. (2000). TWA: an Airline and Its Aircraft. McLean, Virginia: Paladwr Press. ISBN 1-888962-16-X.
  • Eden, Paul, ed. (2008). Civil Aircraft Today: The World's Most Successful Commercial Aircraft. Silverdale, Washington: Amber Books Ltd. ISBN 978-1-84509-324-2.
  • Kane, Robert M. (2003). Air Transportation 1903–2003. Fourteenth Edition. Dubuque, Iowa: Kendall Hunt Publishing. ISBN 978-0-7872-8881-5.
  • Norris, Guy; Wagner, Mark (1998). Boeing. Osceola, Wisconsin: MBI Publishing. ISBN 0-7603-0497-1.
  • Norris, Guy; Wagner, Mark (1999). "757: New Directions". Modern Boeing Jetliners. Osceola, Wisconsin: Zenith Imprint. ISBN 0-7603-0717-2.
  • Pace, Steve (1999). F-22 Raptor: America's Next Lethal War Machine. New York, New York: McGraw Hill. ISBN 978-0-07-134271-1.
  • Sharpe, Mike; Shaw, Robbie (2001). Boeing 737-100 and 200. Osceola, Wisconsin: MBI Publishing. ISBN 0-7603-0991-4.
  • Veronico, Nick; Dunn, Jim (2004). 21st Century U.S. Air Power. St. Paul, Minnesota: Zenith Press. ISBN 0-7603-2014-4.
  • Wells, Alexander T.; Rodrigues, Clarence C. (2004). Commercial Aviation Safety. New York, New York: McGraw-Hill Professional. ISBN 0-07-141742-7.
  • Combating Terrorism: Interagency Framework and Agency Programs to Address the Overseas Threat. Washington, District of Columbia: United States General Accounting Office. 2003. ISBN 978-1-4289-3944-8.

Further reading

  • Becher, Thomas (1999). Boeing 757 and 767. Marlborough, Wiltshire: Crowood Press. ISBN 1-86126-197-7.
  • Shaw, Robbie (1999). Boeing 757 & 767, Medium Twins. Reading, Pennsylvania: Osprey Publishing. ISBN 1-85532-903-4.
  • Yenne, Bill (2005). The Story of the Boeing Company. St. Paul, Minnesota: Zenith Press. ISBN 978-0-7603-2333-5.

External links

Boeing 757/767 family
Model numbers
Military designations
Notable aircraft
Topics
Boeing airliners and civil aircraft
Airliners
Piston-engined
Jet-engined
In development
Proposed
Not developed
Civil trainers/
utility aircraft
Boeing 7x7 aircraft production timeline, 1955–present
1950s1960s1970s1980s1990s2000s2010s2020s
56789012345678901234567890123456789012345678901234567890123456789012345
Boeing 717 (MD-95)
Boeing 737 OriginalBoeing 737 ClassicBoeing 737 NG737 MAX
Boeing 727
Boeing 720Boeing 757
Boeing 707Boeing 767
Boeing 787
Boeing 777777X
Boeing 747 (Boeing 747SP)Boeing 747-400747-8
  Narrow body   Wide body
Overlapping production times like between the 747-400 and the 747-8 have been decided in favor of newer models
Boeing aircraft model numbers
Aircraft
Turbine engines
Missiles
Vessels
Other
Categories: