Misplaced Pages

Abramov's algorithm

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, particularly in computer algebra, Abramov's algorithm computes all rational solutions of a linear recurrence equation with polynomial coefficients. The algorithm was published by Sergei A. Abramov in 1989.

Universal denominator

The main concept in Abramov's algorithm is a universal denominator. Let K {\textstyle \mathbb {K} } be a field of characteristic zero. The dispersion dis ( p , q ) {\textstyle \operatorname {dis} (p,q)} of two polynomials p , q K [ n ] {\textstyle p,q\in \mathbb {K} } is defined as dis ( p , q ) = max { k N : deg ( gcd ( p ( n ) , q ( n + k ) ) ) 1 } { 1 } , {\displaystyle \operatorname {dis} (p,q)=\max\{k\in \mathbb {N} \,:\,\deg(\gcd(p(n),q(n+k)))\geq 1\}\cup \{-1\},} where N {\textstyle \mathbb {N} } denotes the set of non-negative integers. Therefore the dispersion is the maximum k N {\textstyle k\in \mathbb {N} } such that the polynomial p {\textstyle p} and the k {\textstyle k} -times shifted polynomial q {\displaystyle q} have a common factor. It is 1 {\textstyle -1} if such a k {\textstyle k} does not exist. The dispersion can be computed as the largest non-negative integer root of the resultant res n ( p ( n ) , q ( n + k ) ) K [ k ] {\textstyle \operatorname {res} _{n}(p(n),q(n+k))\in \mathbb {K} } . Let k = 0 r p k ( n ) y ( n + k ) = f ( n ) {\textstyle \sum _{k=0}^{r}p_{k}(n)\,y(n+k)=f(n)} be a recurrence equation of order r {\textstyle r} with polynomial coefficients p k K [ n ] {\displaystyle p_{k}\in \mathbb {K} } , polynomial right-hand side f K [ n ] {\textstyle f\in \mathbb {K} } and rational sequence solution y ( n ) K ( n ) {\textstyle y(n)\in \mathbb {K} (n)} . It is possible to write y ( n ) = p ( n ) / q ( n ) {\textstyle y(n)=p(n)/q(n)} for two relatively prime polynomials p , q K [ n ] {\textstyle p,q\in \mathbb {K} } . Let D = dis ( p r ( n r ) , p 0 ( n ) ) {\textstyle D=\operatorname {dis} (p_{r}(n-r),p_{0}(n))} and u ( n ) = gcd ( [ p 0 ( n + D ) ] D + 1 _ , [ p r ( n r ) ] D + 1 _ ) {\displaystyle u(n)=\gcd(^{\underline {D+1}},^{\underline {D+1}})} where [ p ( n ) ] k _ = p ( n ) p ( n 1 ) p ( n k + 1 ) {\textstyle ^{\underline {k}}=p(n)p(n-1)\cdots p(n-k+1)} denotes the falling factorial of a function. Then q ( n ) {\textstyle q(n)} divides u ( n ) {\textstyle u(n)} . So the polynomial u ( n ) {\textstyle u(n)} can be used as a denominator for all rational solutions y ( n ) {\textstyle y(n)} and hence it is called a universal denominator.

Algorithm

Let again k = 0 r p k ( n ) y ( n + k ) = f ( n ) {\textstyle \sum _{k=0}^{r}p_{k}(n)\,y(n+k)=f(n)} be a recurrence equation with polynomial coefficients and u ( n ) {\textstyle u(n)} a universal denominator. After substituting y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} for an unknown polynomial z ( n ) K [ n ] {\textstyle z(n)\in \mathbb {K} } and setting ( n ) = lcm ( u ( n ) , , u ( n + r ) ) {\textstyle \ell (n)=\operatorname {lcm} (u(n),\dots ,u(n+r))} the recurrence equation is equivalent to k = 0 r p k ( n ) z ( n + k ) u ( n + k ) ( n ) = f ( n ) ( n ) . {\displaystyle \sum _{k=0}^{r}p_{k}(n){\frac {z(n+k)}{u(n+k)}}\ell (n)=f(n)\ell (n).} As the u ( n + k ) {\textstyle u(n+k)} cancel this is a linear recurrence equation with polynomial coefficients which can be solved for an unknown polynomial solution z ( n ) {\textstyle z(n)} . There are algorithms to find polynomial solutions. The solutions for z ( n ) {\textstyle z(n)} can then be used again to compute the rational solutions y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} .

algorithm rational_solutions is
    input: Linear recurrence equation 
  
    
      
        
          
          
            k
            =
            0
          
          
            r
          
        
        
          p
          
            k
          
        
        (
        n
        )
        
        y
        (
        n
        +
        k
        )
        =
        f
        (
        n
        )
        ,
        
          p
          
            k
          
        
        ,
        f
        
        
          K
        
        [
        n
        ]
        ,
        
          p
          
            0
          
        
        ,
        
          p
          
            r
          
        
        
        0
      
    
    {\textstyle \sum _{k=0}^{r}p_{k}(n)\,y(n+k)=f(n),p_{k},f\in \mathbb {K} ,p_{0},p_{r}\neq 0}
  
.
    output: The general rational solution 
  
    
      
        y
      
    
    {\textstyle y}
  
 if there are any solutions, otherwise false.
    
  
    
      
        D
        =
        disp
        
        (
        
          p
          
            r
          
        
        (
        n
        
        r
        )
        ,
        
          p
          
            0
          
        
        (
        n
        )
        )
      
    
    {\textstyle D=\operatorname {disp} (p_{r}(n-r),p_{0}(n))}
  

    
  
    
      
        u
        (
        n
        )
        =
        gcd
        (
        [
        
          p
          
            0
          
        
        (
        n
        +
        D
        )
        
          ]
          
            
              
                D
                +
                1
              
              _

            
          
        
        ,
        [
        
          p
          
            r
          
        
        (
        n
        
        r
        )
        
          ]
          
            
              
                D
                +
                1
              
              _

            
          
        
        )
      
    
    {\textstyle u(n)=\gcd(^{\underline {D+1}},^{\underline {D+1}})}
  

    
  
    
      
        
        (
        n
        )
        =
        lcm
        
        (
        u
        (
        n
        )
        ,
        
        ,
        u
        (
        n
        +
        r
        )
        )
      
    
    {\textstyle \ell (n)=\operatorname {lcm} (u(n),\dots ,u(n+r))}
  

    Solve 
  
    
      
        
          
          
            k
            =
            0
          
          
            r
          
        
        
          p
          
            k
          
        
        (
        n
        )
        
          
            
              z
              (
              n
              +
              k
              )
            
            
              u
              (
              n
              +
              k
              )
            
          
        
        
        (
        n
        )
        =
        f
        (
        n
        )
        
        (
        n
        )
      
    
    {\textstyle \sum _{k=0}^{r}p_{k}(n){\frac {z(n+k)}{u(n+k)}}\ell (n)=f(n)\ell (n)}
  
 for general polynomial solution 
  
    
      
        z
        (
        n
        )
      
    
    {\textstyle z(n)}
  

    if solution 
  
    
      
        z
        (
        n
        )
      
    
    {\textstyle z(n)}
  
 exists then
        return general solution 
  
    
      
        y
        (
        n
        )
        =
        z
        (
        n
        )
        
          /
        
        u
        (
        n
        )
      
    
    {\textstyle y(n)=z(n)/u(n)}
  

    else
        return false
    end if

Example

The homogeneous recurrence equation of order 1 {\textstyle 1} ( n 1 ) y ( n ) + ( n 1 ) y ( n + 1 ) = 0 {\displaystyle (n-1)\,y(n)+(-n-1)\,y(n+1)=0} over Q {\textstyle \mathbb {Q} } has a rational solution. It can be computed by considering the dispersion D = dis ( p 1 ( n 1 ) , p 0 ( n ) ) = disp ( n , n 1 ) = 1. {\displaystyle D=\operatorname {dis} (p_{1}(n-1),p_{0}(n))=\operatorname {disp} (-n,n-1)=1.} This yields the following universal denominator: u ( n ) = gcd ( [ p 0 ( n + 1 ) ] 2 _ , [ p r ( n 1 ) ] 2 _ ) = ( n 1 ) n {\displaystyle u(n)=\gcd(^{\underline {2}},^{\underline {2}})=(n-1)n} and ( n ) = lcm ( u ( n ) , u ( n + 1 ) ) = ( n 1 ) n ( n + 1 ) . {\displaystyle \ell (n)=\operatorname {lcm} (u(n),u(n+1))=(n-1)n(n+1).} Multiplying the original recurrence equation with ( n ) {\textstyle \ell (n)} and substituting y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} leads to ( n 1 ) ( n + 1 ) z ( n ) + ( n 1 ) ( n 1 ) z ( n + 1 ) = 0. {\displaystyle (n-1)(n+1)\,z(n)+(-n-1)(n-1)\,z(n+1)=0.} This equation has the polynomial solution z ( n ) = c {\textstyle z(n)=c} for an arbitrary constant c Q {\textstyle c\in \mathbb {Q} } . Using y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n)/u(n)} the general rational solution is y ( n ) = c ( n 1 ) n {\displaystyle y(n)={\frac {c}{(n-1)n}}} for arbitrary c Q {\textstyle c\in \mathbb {Q} } .

References

  1. Abramov, Sergei A. (1989). "Rational solutions of linear differential and difference equations with polynomial coefficients". USSR Computational Mathematics and Mathematical Physics. 29 (6): 7–12. doi:10.1016/s0041-5553(89)80002-3. ISSN 0041-5553.
  2. ^ Abramov, Sergei A. (1995). "Rational solutions of linear difference and q -difference equations with polynomial coefficients". Proceedings of the 1995 international symposium on Symbolic and algebraic computation - ISSAC '95. pp. 285–289. doi:10.1145/220346.220383. ISBN 978-0897916998. S2CID 15424889.
  3. Man, Yiu-Kwong; Wright, Francis J. (1994). "Fast polynomial dispersion computation and its application to indefinite summation". Proceedings of the international symposium on Symbolic and algebraic computation - ISSAC '94. pp. 175–180. doi:10.1145/190347.190413. ISBN 978-0897916387. S2CID 2192728.
  4. Gerhard, Jürgen (2005). Modular Algorithms in Symbolic Summation and Symbolic Integration. Lecture Notes in Computer Science. Vol. 3218. doi:10.1007/b104035. ISBN 978-3-540-24061-7. ISSN 0302-9743.
  5. Chen, William Y. C.; Paule, Peter; Saad, Husam L. (2007). "Converging to Gosper's Algorithm". arXiv:0711.3386 .
WikiProject Mathematics on Wikidata
Category: