Misplaced Pages

Acín decomposition

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (June 2024)

In a 2000 paper titled "Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States" Acín et al. described a way of separating out one of the terms of a general tripartite quantum state. This can be useful in considering measures of entanglement of quantum states.

General decomposition

For a general three-qubit state | ψ = a 000 | 0 A | 0 B | 0 C + a 001 | 0 A | 0 B | 1 C + a 010 | 0 A | 1 B | 0 C + a 011 | 0 A | 1 B | 1 C + a 100 | 1 A | 0 B | 0 C + a 101 | 1 A | 0 B | 1 C + a 110 | 1 A | 1 B | 0 C + a 111 | 1 A | 1 B | 1 C {\displaystyle |\psi \rangle =a_{000}\left|0_{A}\right\rangle \left|0_{B}\right\rangle \left|0_{C}\right\rangle +a_{001}\left|0_{A}\right\rangle \left|0_{B}\right\rangle \left|1_{C}\right\rangle +a_{010}\left|0_{A}\right\rangle \left|1_{B}\right\rangle \left|0_{C}\right\rangle +a_{011}\left|0_{A}\right\rangle \left|1_{B}\right\rangle \left|1_{C}\right\rangle +a_{100}\left|1_{A}\right\rangle \left|0_{B}\right\rangle \left|0_{C}\right\rangle +a_{101}\left|1_{A}\right\rangle \left|0_{B}\right\rangle \left|1_{C}\right\rangle +a_{110}\left|1_{A}\right\rangle \left|1_{B}\right\rangle \left|0_{C}\right\rangle +a_{111}\left|1_{A}\right\rangle \left|1_{B}\right\rangle \left|1_{C}\right\rangle } there is no way of writing

| ψ A , B , C λ 0 | 0 A | 0 B | 0 C + λ 1 | 1 A | 1 B | 1 C {\displaystyle \left|\psi _{A,B,C}\right\rangle \neq {\sqrt {\lambda _{0}}}\left|0_{A}^{\prime }\right\rangle \left|0_{B}^{\prime }\right\rangle \left|0_{C}^{\prime }\right\rangle +{\sqrt {\lambda _{1}}}\left|1_{A}^{\prime }\right\rangle \left|1_{B}^{\prime }\right\rangle \left|1_{C}^{\prime }\right\rangle }

but there is a general transformation to | ψ = λ 1 | 0 A | 0 B | 0 C + | 1 A ( λ 2 e i ϕ | 0 B | 0 C + λ 3 | 0 B | 1 C + λ 4 | 1 B | 0 C + λ 5 | 1 B | 1 C ) {\displaystyle |\psi \rangle =\lambda _{1}|0_{A}^{}\rangle |0_{B}^{}\rangle |0_{C}^{}\rangle +|1_{A}^{}\rangle (\lambda _{2}e^{i\phi }|0_{B}^{}\rangle |0_{C}^{}\rangle +\lambda _{3}|0_{B}^{}\rangle |1_{C}^{}\rangle +\lambda _{4}|1_{B}^{}\rangle |0_{C}^{}\rangle +\lambda _{5}|1_{B}^{}\rangle |1_{C}^{}\rangle )} where λ i 0 , i = 1 5 λ i 2 = 1 {\displaystyle \lambda _{i}\geq 0,\sum _{i=1}^{5}\lambda _{i}^{2}=1} .

References

  1. Acín, A.; Andrianov, A.; Costa, L.; Jané, E.; Latorre, J. I.; Tarrach, R. (2000-08-14). "Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States". Physical Review Letters. 85 (7): 1560–1563. doi:10.1103/PhysRevLett.85.1560. hdl:2445/12805. ISSN 0031-9007.
Category: