Misplaced Pages

Acceleration (differential geometry)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Acceleration vector)

In mathematics and physics, acceleration is the rate of change of velocity of a curve with respect to a given linear connection. This operation provides us with a measure of the rate and direction of the "bend".

Formal definition

Consider a differentiable manifold M {\displaystyle M} with a given connection Γ {\displaystyle \Gamma } . Let γ : R M {\displaystyle \gamma \colon \mathbb {R} \to M} be a curve in M {\displaystyle M} with tangent vector, i.e. velocity, γ ˙ ( τ ) {\displaystyle {\dot {\gamma }}(\tau )} , with parameter τ {\displaystyle \tau } .

The acceleration vector of γ {\displaystyle \gamma } is defined by γ ˙ γ ˙ {\displaystyle \nabla _{\dot {\gamma }}{\dot {\gamma }}} , where {\displaystyle \nabla } denotes the covariant derivative associated to Γ {\displaystyle \Gamma } .

It is a covariant derivative along γ {\displaystyle \gamma } , and it is often denoted by

γ ˙ γ ˙ = γ ˙ d τ . {\displaystyle \nabla _{\dot {\gamma }}{\dot {\gamma }}={\frac {\nabla {\dot {\gamma }}}{d\tau }}.}

With respect to an arbitrary coordinate system ( x μ ) {\displaystyle (x^{\mu })} , and with ( Γ λ μ ν ) {\displaystyle (\Gamma ^{\lambda }{}_{\mu \nu })} being the components of the connection (i.e., covariant derivative μ := / x μ {\displaystyle \nabla _{\mu }:=\nabla _{\partial /\partial x^{\mu }}} ) relative to this coordinate system, defined by

/ x μ x ν = Γ λ μ ν x λ , {\displaystyle \nabla _{\partial /\partial x^{\mu }}{\frac {\partial }{\partial x^{\nu }}}=\Gamma ^{\lambda }{}_{\mu \nu }{\frac {\partial }{\partial x^{\lambda }}},}

for the acceleration vector field a μ := ( γ ˙ γ ˙ ) μ {\displaystyle a^{\mu }:=(\nabla _{\dot {\gamma }}{\dot {\gamma }})^{\mu }} one gets:

a μ = v ρ ρ v μ = d v μ d τ + Γ μ ν λ v ν v λ = d 2 x μ d τ 2 + Γ μ ν λ d x ν d τ d x λ d τ , {\displaystyle a^{\mu }=v^{\rho }\nabla _{\rho }v^{\mu }={\frac {dv^{\mu }}{d\tau }}+\Gamma ^{\mu }{}_{\nu \lambda }v^{\nu }v^{\lambda }={\frac {d^{2}x^{\mu }}{d\tau ^{2}}}+\Gamma ^{\mu }{}_{\nu \lambda }{\frac {dx^{\nu }}{d\tau }}{\frac {dx^{\lambda }}{d\tau }},}

where x μ ( τ ) := γ μ ( τ ) {\displaystyle x^{\mu }(\tau ):=\gamma ^{\mu }(\tau )} is the local expression for the path γ {\displaystyle \gamma } , and v ρ := ( γ ˙ ) ρ {\displaystyle v^{\rho }:=({\dot {\gamma }})^{\rho }} .

The concept of acceleration is a covariant derivative concept. In other words, in order to define acceleration an additional structure on M {\displaystyle M} must be given.

Using abstract index notation, the acceleration of a given curve with unit tangent vector ξ a {\displaystyle \xi ^{a}} is given by ξ b b ξ a {\displaystyle \xi ^{b}\nabla _{b}\xi ^{a}} .

See also

Notes

  1. Friedman, M. (1983). Foundations of Space-Time Theories. Princeton: Princeton University Press. p. 38. ISBN 0-691-07239-6.
  2. Benn, I.M.; Tucker, R.W. (1987). An Introduction to Spinors and Geometry with Applications in Physics. Bristol and New York: Adam Hilger. p. 203. ISBN 0-85274-169-3.
  3. Malament, David B. (2012). Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. Chicago: University of Chicago Press. ISBN 978-0-226-50245-8.

References

  • Friedman, M. (1983). Foundations of Space-Time Theories. Princeton: Princeton University Press. ISBN 0-691-07239-6.
  • Dillen, F. J. E.; Verstraelen, L.C.A. (2000). Handbook of Differential Geometry. Vol. 1. Amsterdam: North-Holland. ISBN 0-444-82240-2.
  • Pfister, Herbert; King, Markus (2015). Inertia and Gravitation. The Fundamental Nature and Structure of Space-Time. Vol. The Lecture Notes in Physics. Volume 897. Heidelberg: Springer. doi:10.1007/978-3-319-15036-9. ISBN 978-3-319-15035-2.
Categories: