In mathematics and signal processing , the advanced z-transform is an extension of the z-transform , to incorporate ideal delays that are not multiples of the sampling time . The advanced z-transform is widely applied, for example, to accurately model processing delays in digital control . It is also known as the modified z-transform .
It takes the form
F
(
z
,
m
)
=
∑
k
=
0
∞
f
(
k
T
+
m
)
z
−
k
{\displaystyle F(z,m)=\sum _{k=0}^{\infty }f(kT+m)z^{-k}}
where
T is the sampling period
m (the "delay parameter") is a fraction of the sampling period
[
0
,
T
]
.
{\displaystyle .}
Properties
If the delay parameter, m , is considered fixed then all the properties of the z-transform hold for the advanced z-transform.
Linearity
Z
{
∑
k
=
1
n
c
k
f
k
(
t
)
}
=
∑
k
=
1
n
c
k
F
k
(
z
,
m
)
.
{\displaystyle {\mathcal {Z}}\left\{\sum _{k=1}^{n}c_{k}f_{k}(t)\right\}=\sum _{k=1}^{n}c_{k}F_{k}(z,m).}
Time shift
Z
{
u
(
t
−
n
T
)
f
(
t
−
n
T
)
}
=
z
−
n
F
(
z
,
m
)
.
{\displaystyle {\mathcal {Z}}\left\{u(t-nT)f(t-nT)\right\}=z^{-n}F(z,m).}
Damping
Z
{
f
(
t
)
e
−
a
t
}
=
e
−
a
m
F
(
e
a
T
z
,
m
)
.
{\displaystyle {\mathcal {Z}}\left\{f(t)e^{-a\,t}\right\}=e^{-a\,m}F(e^{a\,T}z,m).}
Time multiplication
Z
{
t
y
f
(
t
)
}
=
(
−
T
z
d
d
z
+
m
)
y
F
(
z
,
m
)
.
{\displaystyle {\mathcal {Z}}\left\{t^{y}f(t)\right\}=\left(-Tz{\frac {d}{dz}}+m\right)^{y}F(z,m).}
Final value theorem
lim
k
→
∞
f
(
k
T
+
m
)
=
lim
z
→
1
(
1
−
z
−
1
)
F
(
z
,
m
)
.
{\displaystyle \lim _{k\to \infty }f(kT+m)=\lim _{z\to 1}(1-z^{-1})F(z,m).}
Example
Consider the following example where
f
(
t
)
=
cos
(
ω
t
)
{\displaystyle f(t)=\cos(\omega t)}
:
F
(
z
,
m
)
=
Z
{
cos
(
ω
(
k
T
+
m
)
)
}
=
Z
{
cos
(
ω
k
T
)
cos
(
ω
m
)
−
sin
(
ω
k
T
)
sin
(
ω
m
)
}
=
cos
(
ω
m
)
Z
{
cos
(
ω
k
T
)
}
−
sin
(
ω
m
)
Z
{
sin
(
ω
k
T
)
}
=
cos
(
ω
m
)
z
(
z
−
cos
(
ω
T
)
)
z
2
−
2
z
cos
(
ω
T
)
+
1
−
sin
(
ω
m
)
z
sin
(
ω
T
)
z
2
−
2
z
cos
(
ω
T
)
+
1
=
z
2
cos
(
ω
m
)
−
z
cos
(
ω
(
T
−
m
)
)
z
2
−
2
z
cos
(
ω
T
)
+
1
.
{\displaystyle {\begin{aligned}F(z,m)&={\mathcal {Z}}\left\{\cos \left(\omega \left(kT+m\right)\right)\right\}\\&={\mathcal {Z}}\left\{\cos(\omega kT)\cos(\omega m)-\sin(\omega kT)\sin(\omega m)\right\}\\&=\cos(\omega m){\mathcal {Z}}\left\{\cos(\omega kT)\right\}-\sin(\omega m){\mathcal {Z}}\left\{\sin(\omega kT)\right\}\\&=\cos(\omega m){\frac {z\left(z-\cos(\omega T)\right)}{z^{2}-2z\cos(\omega T)+1}}-\sin(\omega m){\frac {z\sin(\omega T)}{z^{2}-2z\cos(\omega T)+1}}\\&={\frac {z^{2}\cos(\omega m)-z\cos(\omega (T-m))}{z^{2}-2z\cos(\omega T)+1}}.\end{aligned}}}
If
m
=
0
{\displaystyle m=0}
then
F
(
z
,
m
)
{\displaystyle F(z,m)}
reduces to the transform
F
(
z
,
0
)
=
z
2
−
z
cos
(
ω
T
)
z
2
−
2
z
cos
(
ω
T
)
+
1
,
{\displaystyle F(z,0)={\frac {z^{2}-z\cos(\omega T)}{z^{2}-2z\cos(\omega T)+1}},}
which is clearly just the z -transform of
f
(
t
)
{\displaystyle f(t)}
.
References
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑