Misplaced Pages

Al-Salam–Chihara polynomials

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Family of basic hypergeometric orthogonal polynomials in the basic Askey scheme Not to be confused with Al-Salam–Carlitz polynomials.

In mathematics, the Al-Salam–Chihara polynomials Qn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Chihara (1976). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14.8) give a detailed list of the properties of Al-Salam–Chihara polynomials.

Definition

The Al-Salam–Chihara polynomials are given in terms of basic hypergeometric functions and the q-Pochhammer symbol by

Q n ( x ; a , b ; q ) = ( a b ; q ) n a n 3 ϕ 2 ( q n , a e i θ , a e i θ ; a b , 0 ; q , q ) {\displaystyle Q_{n}(x;a,b;q)={\frac {(ab;q)_{n}}{a^{n}}}{}_{3}\phi _{2}(q^{-n},ae^{i\theta },ae^{-i\theta };ab,0;q,q)}

where x = cos(θ).

References

Further reading

  • Bryc, W., Matysiak, W., & Szabłowski, P. (2005). Probabilistic aspects of Al-Salam–Chihara polynomials. Proceedings of the American Mathematical Society, 133(4), 1127-1134.
  • Floreanini, R., LeTourneux, J., & Vinet, L. (1997). Symmetry techniques for the Al-Salam-Chihara polynomials. Journal of Physics A: Mathematical and General, 30(9), 3107.
  • Christiansen, J. S., & Koelink, E. (2008). Self-adjoint difference operators and symmetric Al-Salam–Chihara polynomials. Constructive Approximation, 28(2), 199-218.
  • Ishikawa, M., & Zeng, J. (2009). The Andrews–Stanley partition function and Al-Salam–Chihara polynomials. Discrete Mathematics, 309(1), 151-175.
  • Atakishiyeva, M. K., & Atakishiyev, N. M. (1997). Fourier-Gauss transforms of the Al-Salam-Chihara polynomials. Journal of Physics A: Mathematical and General, 30(19), L655.
Categories: