Misplaced Pages

Ramsey cardinal

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Almost Ramsey cardinal)
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (July 2024) (Learn how and when to remove this message)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (July 2024) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by Erdős & Hajnal (1962) and named after Frank P. Ramsey, whose theorem, called Ramsey's theorem establishes that ω enjoys a certain property that Ramsey cardinals generalize to the uncountable case.

Let denote the set of all finite subsets of κ. A cardinal number κ is called Ramsey if, for every function

f: → {0, 1}

there is a set A of cardinality κ that is homogeneous for f. That is, for every n, the function f is constant on the subsets of cardinality n from A. A cardinal κ is called ineffably Ramsey if A can be chosen to be a stationary subset of κ. A cardinal κ is called virtually Ramsey if for every function

f: → {0, 1}

there is C, a closed and unbounded subset of κ, so that for every λ in C of uncountable cofinality, there is an unbounded subset of λ that is homogenous for f; slightly weaker is the notion of almost Ramsey where homogenous sets for f are required of order type λ, for every λ < κ.

The existence of any of these kinds of Ramsey cardinal is sufficient to prove the existence of 0, or indeed that every set with rank less than κ has a sharp. This in turn implies the falsity of the Axiom of Constructibility of Kurt Gödel.

Every measurable cardinal is a Ramsey cardinal, and every Ramsey cardinal is a Rowbottom cardinal.

A property intermediate in strength between Ramseyness and measurability is existence of a κ-complete normal non-principal ideal I on κ such that for every AI and for every function

f: → {0, 1}

there is a set BA not in I that is homogeneous for f. This is strictly stronger than κ being ineffably Ramsey.

Definition by κ-models

A regular cardinal κ is Ramsey if and only if for any set Aκ, there is a transitive set M ⊨ ZFC (i.e. ZFC without the axiom of powerset) of size κ with AM, and a nonprincipal ultrafilter U on the Boolean algebra P(κ) ∩ M such that:

  • U is an M-ultrafilter: for any sequence ⟨Xβ : β < κ⟩ ∈ M of members of U, the diagonal intersection ΔXβ = {α < κ : ∀β < α(αXβ)} ∈ U,
  • U is weakly amenable: for any sequence ⟨Xβ : β < κ⟩ ∈ M of subsets of κ, the set {β < κ : XβU} ∈ M, and
  • U is σ-complete: the intersection of any countable family of members of U is again in U.

References

  1. Gitman, Victoria (2008). "Ramsey-like cardinals". arXiv:0801.4723v2 .

Bibliography

Stub icon

This set theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: