Misplaced Pages

Ambrosia beetle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Species of beetle

Ambrosia beetles are beetles of the weevil subfamilies Scolytinae and Platypodinae (Coleoptera, Curculionidae), which live in nutritional symbiosis with ambrosia fungi. The beetles excavate tunnels in dead or stressed trees into which they introduce fungal gardens, their sole source of nutrition. After landing on a suitable tree, an ambrosia beetle excavates a tunnel in which it releases its fungal symbiont. The fungus penetrates the plant's xylem tissue, extracts nutrients from it, and concentrates the nutrients on and near the surface of the beetle gallery. Ambrosia fungi are typically poor wood degraders, and instead utilize less demanding nutrients. Symbiotic fungi produce and detoxify ethanol, which is an attractant for ambrosia beetles and likely prevents growth of antagonistic pathogens and selects for other beneficial symbionts. The majority of ambrosia beetles colonize xylem (sapwood and/or heartwood) of recently dead trees, but some colonize stressed trees that are still alive, and a few species attack healthy trees. Species differ in their preference for different parts of trees, different stages of deterioration, and in the shape of their tunnels ("galleries"). However, the majority of ambrosia beetles are not specialized to any taxonomic group of hosts, unlike most phytophagous organisms including the closely related bark beetles. One species of ambrosia beetle, Austroplatypus incompertus exhibits eusociality, one of the few organisms outside of Hymenoptera and Isoptera to do so.

Classification and diversity

Gallery of Xylosandrus crassiusculus split open, with pupae and black fungus

Until recently ambrosia beetles have been placed in independent families Scolytidae and Platypodidae, however, they are in fact some of the most highly derived weevils, and are now placed in the subfamilies Scolytinae and Platypodinae of Family Curculionidae There are about 3,000 known beetle species employing the ambrosia strategy.

Ambrosia beetles are an ecological guild, but not a phylogenetic clade. The ambrosia habit is an example of convergent evolution, as several groups evolved the same symbiotic relationship independently. The highest diversity of ambrosia beetles is in the tropics. In the Paleotropical region, hundreds of species of Xyleborini and Platypodinae are the main agent initiating dead wood decomposition. In the Neotropics, Platypodinae and Xyleborini are joined by the scolytine tribe Cortylini. Compared to the diversity in the tropics, ambrosia beetle fauna in the temperate zone is rather limited. In the Nearctic region it is dominated by a few species from Cortylini, Xyleborini and Xyloterini. In the Palearctic realm, significant groups are Xyloterini and Xyleborini, joined by Scolytoplatypodini in the Far East.

Dinoplatypus chevrolati from Papua New Guinea, an example of Platypodinae, another species-rich group of ambrosia beetles

The symbiotic relationship

Beetles and their larvae graze on mycelium exposed on the gallery walls and on bodies called sporodochia, clusters of the fungus' spores. Most ambrosia beetle species don't ingest the wood tissue; instead, the sawdust resulting from the excavation is pushed out of the gallery. Following the larval and pupal stage, adult ambrosia beetles collect masses of fungal spores into their mycangia and leave the gallery to find their own tree.

A few dozen species of ambrosia fungi have been described, currently in the genera Ambrosiella, Meredithiella, and Phialophoropsis (from Microascales), Afroraffaelea and Raffaelea (from Ophiostomatales), Ambrosiozyma (Saccharomycetales), Fusarium and Geosmithia (from Hypocreales), and Flavodon (from Basidiomycota). Many more species remain to be discovered. Little is known about the bionomy or specificity of ambrosia fungi. Ambrosia fungi are thought to be dependent on transport and inoculation provided by their beetle symbionts, as they have not been found in any other habitat. All ambrosia fungi are probably asexual and clonal. Some beetles are known to acquire ("steal") fungal inoculum from fungal gardens of other ambrosia beetle species.

Evolutionary origin

During their evolution, most scolytid and platypodid weevils became progressively more or less dependent on fungi regularly co-habiting dead trees. This evolution had various outcomes in different groups:

  • Some phloem-eating bark beetles (phloeophages) are vectors of phytopathogenic fungi, which in some cases contribute to tree death. The extent to which fungal pathogenicity benefits the beetles themselves is not at all trivial and remains disputed.
  • Many of phloem-feeding bark beetles use phloem-infesting fungi as an addition to their diet. Some phloeophages became dependent on such a mixed diet and evolved mycangia to transport their symbionts from maternal trees to newly infested trees. These beetles are called mycophloeophages.
  • Ambrosia beetles and ambrosia fungi are thus only one end of the spectrum of the weevil-fungus association, where both the beetle and the fungus became completely dependent on each other.

Impact on forests

The vast majority of ambrosia beetles colonize dead trees, and have minor or no economic effect. A few species are able to colonize living stressed trees (Xylosandrus). A few species are able to attack live and healthy trees, and those can reach epidemic proportions in non-native, invaded regions (Xyleborus glabratus, Euwallacea fornicatus).

Beetle species that readily colonize lumber, such as sawlogs, green lumber, and stave-bolts, often cause region-specific economic loss from the pinhole and stained-wood defects caused by their brood galleries. In Northern USA and Canada, conifer logs are attractive to Trypodendron lineatum (Oliv.) during the spring swarming flight (Dyer 1967). Previous studies showed that short log sections become attractive more rapidly than corresponding long logs.

See also

References

  1. Kasson, Matthew T.; Wickert, Kristen L.; Stauder, Cameron M.; Macias, Angie M.; Berger, Matthew C.; Simmons, D. Rabern; Short, Dylan P. G.; DeVallance, David B.; Hulcr, Jiri (October 2016). "Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles". Fungal Ecology. 23: 86–96. doi:10.1016/j.funeco.2016.07.002.
  2. Ranger, Christopher M.; Biedermann, Peter H. W.; Phuntumart, Vipaporn; Beligala, Gayathri U.; Ghosh, Satyaki; Palmquist, Debra E.; Mueller, Robert; Barnett, Jenny; Schultz, Peter B.; Reding, Michael E.; Benz, J. Philipp (24 April 2018). "Symbiont selection via alcohol benefits fungus farming by ambrosia beetles". Proceedings of the National Academy of Sciences. 115 (17): 4447–4452. Bibcode:2018PNAS..115.4447R. doi:10.1073/pnas.1716852115. PMC 5924889. PMID 29632193.
  3. ^ Hulcr, Jiri; Stelinski, Lukasz L. (31 January 2017). "The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management". Annual Review of Entomology. 62: 285–303. doi:10.1146/annurev-ento-031616-035105. PMID 27860522.
  4. Kuschel, Guillermo; Leschen, Richard A. B.; Zimmerman, Elwood C. (2000). "Platypodidae under scrutiny". Invertebrate Systematics. 14 (6): 771–805. doi:10.1071/IT00024.
  5. Marvaldi, Adriana E.; Sequeira, Andrea S.; O'Brien, Charles W.; Farrell, Brian D. (September 2002). "Molecular and Morphological Phylogenetics of Weevils (Coleoptera, Curculionoidea): Do Niche Shifts Accompany Diversification?". Systematic Biology. 51 (5): 761–785. doi:10.1080/10635150290102465. PMID 12396590.
  6. McKenna, Duane D.; Sequeira, Andrea S.; Marvaldi, Adriana E.; Farrell, Brian D. (28 April 2009). "Temporal lags and overlap in the diversification of weevils and flowering plants". Proceedings of the National Academy of Sciences. 106 (17): 7083–7088. Bibcode:2009PNAS..106.7083M. doi:10.1073/pnas.0810618106. PMC 2678426. PMID 19365072.
  7. Hulcr, Jiri; Atkinson, Thomas H.; Cognato, Anthony I.; Jordal, Bjarte H.; McKenna, Duane D. (2015). "Morphology, Taxonomy, and Phylogenetics of Bark Beetles". Bark Beetles. pp. 41–84. doi:10.1016/B978-0-12-417156-5.00002-2. ISBN 978-0-12-417156-5.
  8. Farrell, Brian D.; Sequeira, Andrea S.; O'Meara, Brian C.; Normark, Benjamin B.; Chung, Jeffrey H.; Jordal, Bjarte H. (October 2001). "The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae)". Evolution. 55 (10): 2011–2027. doi:10.1111/j.0014-3820.2001.tb01318.x. PMID 11761062. S2CID 26352287.
  9. Malloch, D; Blackwell, M (1993). "Dispersal biology of ophiostomatoid fungi". In Wingfield, Michael J.; Seifert, Keith A.; Webber, Joan F. (eds.). Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity. American Phytopathological Society. pp. 195–206. ISBN 978-0-89054-156-2.
  10. Hulcr, Jiri; Cognato, Anthony I. (November 2010). "Repeated evolution of crop theft in fungus‐farming ambrosia beetles". Evolution. 64 (11): 3205–3212. doi:10.1111/j.1558-5646.2010.01055.x. PMID 20633043. S2CID 11844858.
  11. Paine, T. D.; Raffa, K. F.; Harrington, T. C. (January 1997). "Interactions among scolytid bark beetles, their associated fungi, and live host conifers". Annual Review of Entomology. 42 (1): 179–206. doi:10.1146/annurev.ento.42.1.179. PMID 15012312.
  12. Six, Diana L.; Wingfield, Michael J. (7 January 2011). "The Role of Phytopathogenicity in Bark Beetle–Fungus Symbioses: A Challenge to the Classic Paradigm". Annual Review of Entomology. 56 (1): 255–272. doi:10.1146/annurev-ento-120709-144839. hdl:2263/15796. PMID 20822444.
  13. Klepzig, Kier D.; Six, D. L. (2004). "Bark Beetle-Fungal Symbiosis: Context Dependency in Complex Associations". Symbiosis. 37: 189–2005.
  14. Beaver, R. A. (2012). "Insect-Fungus Relationship in the Bark and Ambrosia Beetles". In Meurant, Gerard (ed.). Insect-Fungus Interactions. Academic Press. pp. 121–143. ISBN 978-0-08-098453-7.
  15. Ranger, Christopher M.; Reding, Michael E.; Persad, Anand B.; Herms, Daniel A. (May 2010). "Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles". Agricultural and Forest Entomology. 12 (2): 177–185. doi:10.1111/j.1461-9563.2009.00469.x. S2CID 54556122.
  16. Hulcr, Jiri; Black, Adam; Prior, Kirsten; Chen, Chi-Yu; Li, Hou-Feng (June 2017). "Studies of Ambrosia Beetles (Coleoptera: Curculionidae) in Their Native Ranges Help Predict Invasion Impact". Florida Entomologist. 100 (2): 257–261. doi:10.1653/024.100.0219. S2CID 67808629.
  17. Dyer, E. D. A. (1967). "Relation of attack by ambrosia beetle (Trypodendron lineatum (Oliv.)) to felling date of spruce in central British Columbia". Bi-monthly Research Notes. 23 (2): 11.

External links

Bibliography

  • van de Peppel, L. J. J.; Aanen, D. K.; Biedermann, P. H. W. (April 2018). "Low intraspecific genetic diversity indicates asexuality and vertical transmission in the fungal cultivars of ambrosia beetles". Fungal Ecology. 32: 57–64. doi:10.1016/j.funeco.2017.11.010. hdl:21.11116/0000-0003-BB62-C.
Categories: