Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
where is the number of chain segments, is the Boltzmann constant, is the temperature in kelvins, is the number of chains in the network of a cross-linked polymer,
where is the first invariant of the left Cauchy–Green deformation tensor, and is the inverse Langevin function which can be approximated by
For small deformations the Arruda–Boyce model reduces to the Gaussian network based neo-Hookean solid model. It can be shown that the Gent model is a simple and accurate approximation of the Arruda–Boyce model.
Alternative expressions for the Arruda–Boyce model
An alternative form of the Arruda–Boyce model, using the first five terms of the inverse Langevin function, is
where is a material constant. The quantity can also be interpreted as a measure of the limiting network stretch.
If is the stretch at which the polymer chain network becomes locked, we can express the Arruda–Boyce strain energy density as
We may alternatively express the Arruda–Boyce model in the form
where and
If the rubber is compressible, a dependence on can be introduced into the strain energy density; being the deformation gradient. Several possibilities exist, among which the Kaliske–Rothert extension has been found to be reasonably accurate. With that extension, the Arruda-Boyce strain energy density function can be expressed as
For the incompressible Arruda–Boyce model to be consistent with linear elasticity, with as the shear modulus of the material, the following condition has to be satisfied:
From the Arruda–Boyce strain energy density function, we have,
Therefore, at ,
Substituting in the values of leads to the consistency condition
Stress-deformation relations
The Cauchy stress for the incompressible Arruda–Boyce model is given by
Uniaxial extension
For uniaxial extension in the -direction, the principal stretches are . From incompressibility . Hence .
Therefore,
Planar extension tests are carried out on thin specimens which are constrained from deforming in one direction. For planar extension in the directions with the direction constrained, the principal stretches are . From incompressibility . Hence .
Therefore,
The Arruda–Boyce model is based on the statistical mechanics of polymer chains. In this approach, each macromolecule is described as a chain of segments, each of length . If we assume that the initial configuration of a chain can be described by a random walk, then the initial chain length is
If we assume that one end of the chain is at the origin, then the probability that a block of size around the origin will contain the other end of the chain, , assuming a Gaussian probability density function, is
where is a constant. The total entropy in a network of chains is therefore
where an affine deformation has been assumed. Therefore the strain energy of the deformed network is
where is the temperature.
Notes and references
^ Arruda, E. M. and Boyce, M. C., 1993, A three-dimensional model for the large stretch behavior of rubber elastic materials,, J. Mech. Phys. Solids, 41(2), pp. 389–412.
Bergstrom, J. S. and Boyce, M. C., 2001, Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity, Macromolecules, 34 (3), pp 614–626, doi:10.1021/ma0007942.
Horgan, C. O. and Saccomandi, G., 2002, A molecular-statistical basis for the Gent constitutive model of rubber elasticity, Journal of Elasticity, 68(1), pp. 167–176.
Hiermaier, S. J., 2008, Structures under Crash and Impact, Springer.
Kaliske, M. and Rothert, H., 1997, On the finite element implementation of rubber-like materials at finite strains, Engineering Computations, 14(2), pp. 216–232.
Ogden, R. W., 1984, Non-linear elastic deformations, Dover.