In mathematics, the Bateman polynomials are a family F n of orthogonal polynomials introduced by Bateman (1933 ). The Bateman–Pasternack polynomials are a generalization introduced by Pasternack (1939) .
Bateman polynomials can be defined by the relation
F
n
(
d
d
x
)
sech
(
x
)
=
sech
(
x
)
P
n
(
tanh
(
x
)
)
.
{\displaystyle F_{n}\left({\frac {d}{dx}}\right)\operatorname {sech} (x)=\operatorname {sech} (x)P_{n}(\tanh(x)).}
where P n is a Legendre polynomial . In terms of generalized hypergeometric functions , they are given by
F
n
(
x
)
=
3
F
2
(
−
n
,
n
+
1
,
1
2
(
x
+
1
)
1
,
1
;
1
)
.
{\displaystyle F_{n}(x)={}_{3}F_{2}\left({\begin{array}{c}-n,~n+1,~{\tfrac {1}{2}}(x+1)\\1,~1\end{array}};1\right).}
Pasternack (1939) generalized the Bateman polynomials to polynomials F n with
F
n
m
(
d
d
x
)
sech
m
+
1
(
x
)
=
sech
m
+
1
(
x
)
P
n
(
tanh
(
x
)
)
{\displaystyle F_{n}^{m}\left({\frac {d}{dx}}\right)\operatorname {sech} ^{m+1}(x)=\operatorname {sech} ^{m+1}(x)P_{n}(\tanh(x))}
These generalized polynomials also have a representation in terms of generalized hypergeometric functions, namely
F
n
m
(
x
)
=
3
F
2
(
−
n
,
n
+
1
,
1
2
(
x
+
m
+
1
)
1
,
m
+
1
;
1
)
.
{\displaystyle F_{n}^{m}(x)={}_{3}F_{2}\left({\begin{array}{c}-n,~n+1,~{\tfrac {1}{2}}(x+m+1)\\1,~m+1\end{array}};1\right).}
Carlitz (1957) showed that the polynomials Q n studied by Touchard (1956) , see Touchard polynomials , are the same as Bateman polynomials up to a change of variable: more precisely
Q
n
(
x
)
=
(
−
1
)
n
2
n
n
!
(
2
n
n
)
−
1
F
n
(
2
x
+
1
)
{\displaystyle Q_{n}(x)=(-1)^{n}2^{n}n!{\binom {2n}{n}}^{-1}F_{n}(2x+1)}
Bateman and Pasternack's polynomials are special cases of the symmetric continuous Hahn polynomials .
Examples
The polynomials of small n read
F
0
(
x
)
=
1
{\displaystyle F_{0}(x)=1}
;
F
1
(
x
)
=
−
x
{\displaystyle F_{1}(x)=-x}
;
F
2
(
x
)
=
1
4
+
3
4
x
2
{\displaystyle F_{2}(x)={\frac {1}{4}}+{\frac {3}{4}}x^{2}}
;
F
3
(
x
)
=
−
7
12
x
−
5
12
x
3
{\displaystyle F_{3}(x)=-{\frac {7}{12}}x-{\frac {5}{12}}x^{3}}
;
F
4
(
x
)
=
9
64
+
65
96
x
2
+
35
192
x
4
{\displaystyle F_{4}(x)={\frac {9}{64}}+{\frac {65}{96}}x^{2}+{\frac {35}{192}}x^{4}}
;
F
5
(
x
)
=
−
407
960
x
−
49
96
x
3
−
21
320
x
5
{\displaystyle F_{5}(x)=-{\frac {407}{960}}x-{\frac {49}{96}}x^{3}-{\frac {21}{320}}x^{5}}
;
Properties
Orthogonality
The Bateman polynomials satisfy the orthogonality relation
∫
−
∞
∞
F
m
(
i
x
)
F
n
(
i
x
)
sech
2
(
π
x
2
)
d
x
=
4
(
−
1
)
n
π
(
2
n
+
1
)
δ
m
n
.
{\displaystyle \int _{-\infty }^{\infty }F_{m}(ix)F_{n}(ix)\operatorname {sech} ^{2}\left({\frac {\pi x}{2}}\right)\,dx={\frac {4(-1)^{n}}{\pi (2n+1)}}\delta _{mn}.}
The factor
(
−
1
)
n
{\displaystyle (-1)^{n}}
occurs on the right-hand side of this equation because the Bateman polynomials as defined here must be scaled by a factor
i
n
{\displaystyle i^{n}}
to make them remain real-valued for imaginary argument. The orthogonality relation is simpler when expressed in terms of a modified set of polynomials defined by
B
n
(
x
)
=
i
n
F
n
(
i
x
)
{\displaystyle B_{n}(x)=i^{n}F_{n}(ix)}
, for which it becomes
∫
−
∞
∞
B
m
(
x
)
B
n
(
x
)
sech
2
(
π
x
2
)
d
x
=
4
π
(
2
n
+
1
)
δ
m
n
.
{\displaystyle \int _{-\infty }^{\infty }B_{m}(x)B_{n}(x)\operatorname {sech} ^{2}\left({\frac {\pi x}{2}}\right)\,dx={\frac {4}{\pi (2n+1)}}\delta _{mn}.}
Recurrence relation
The sequence of Bateman polynomials satisfies the recurrence relation
(
n
+
1
)
2
F
n
+
1
(
z
)
=
−
(
2
n
+
1
)
z
F
n
(
z
)
+
n
2
F
n
−
1
(
z
)
.
{\displaystyle (n+1)^{2}F_{n+1}(z)=-(2n+1)zF_{n}(z)+n^{2}F_{n-1}(z).}
Generating function
The Bateman polynomials also have the generating function
∑
n
=
0
∞
t
n
F
n
(
z
)
=
(
1
−
t
)
z
2
F
1
(
1
+
z
2
,
1
+
z
2
;
1
;
t
2
)
,
{\displaystyle \sum _{n=0}^{\infty }t^{n}F_{n}(z)=(1-t)^{z}\,_{2}F_{1}\left({\frac {1+z}{2}},{\frac {1+z}{2}};1;t^{2}\right),}
which is sometimes used to define them.
References
Koelink (1996)
Bateman, H. (1934), "The polynomial
F
n
(
x
)
{\displaystyle F_{n}(x)}
" , Ann. Math. 35 (4): 767-775.
Bateman (1933), p. 28.
Bateman (1933), p. 23.
Al-Salam, Nadhla A. (1967). "A class of hypergeometric polynomials" . Ann. Mat. Pura Appl . 75 (1): 95–120. doi :10.1007/BF02416800 .
Bateman, H. (1933), "Some properties of a certain set of polynomials." , Tôhoku Mathematical Journal , 37 : 23–38, JFM 59.0364.02
Carlitz, Leonard (1957), "Some polynomials of Touchard connected with the Bernoulli numbers", Canadian Journal of Mathematics , 9 : 188–190, doi :10.4153/CJM-1957-021-9 , ISSN 0008-414X , MR 0085361
Koelink, H. T. (1996), "On Jacobi and continuous Hahn polynomials", Proceedings of the American Mathematical Society , 124 (3): 887–898, arXiv :math/9409230 , doi :10.1090/S0002-9939-96-03190-5 , ISSN 0002-9939 , MR 1307541
Pasternack, Simon (1939), "A generalization of the polynomial Fn (x)", London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , 28 (187): 209–226, doi :10.1080/14786443908521175 , MR 0000698
Touchard, Jacques (1956), "Nombres exponentiels et nombres de Bernoulli", Canadian Journal of Mathematics , 8 : 305–320, doi :10.4153/cjm-1956-034-1 , ISSN 0008-414X , MR 0079021
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑