Misplaced Pages

Besov space

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Generalization of Sobolev spaces

In mathematics, the Besov space (named after Oleg Vladimirovich Besov) B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ ∞. These spaces, as well as the similarly defined Triebel–Lizorkin spaces, serve to generalize more elementary function spaces such as Sobolev spaces and are effective at measuring regularity properties of functions.

Definition

Several equivalent definitions exist. One of them is given below.

Let

Δ h f ( x ) = f ( x h ) f ( x ) {\displaystyle \Delta _{h}f(x)=f(x-h)-f(x)}

and define the modulus of continuity by

ω p 2 ( f , t ) = sup | h | t Δ h 2 f p {\displaystyle \omega _{p}^{2}(f,t)=\sup _{|h|\leq t}\left\|\Delta _{h}^{2}f\right\|_{p}}

Let n be a non-negative integer and define: s = n + α with 0 < α ≤ 1. The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} contains all functions f such that

f W n , p ( R ) , 0 | ω p 2 ( f ( n ) , t ) t α | q d t t < . {\displaystyle f\in W^{n,p}(\mathbf {R} ),\qquad \int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}<\infty .}

Norm

The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is equipped with the norm

f B p , q s ( R ) = ( f W n , p ( R ) q + 0 | ω p 2 ( f ( n ) , t ) t α | q d t t ) 1 q {\displaystyle \left\|f\right\|_{B_{p,q}^{s}(\mathbf {R} )}=\left(\|f\|_{W^{n,p}(\mathbf {R} )}^{q}+\int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}\right)^{\frac {1}{q}}}

The Besov spaces B 2 , 2 s ( R ) {\displaystyle B_{2,2}^{s}(\mathbf {R} )} coincide with the more classical Sobolev spaces H s ( R ) {\displaystyle H^{s}(\mathbf {R} )} .

If p = q {\displaystyle p=q} and s {\displaystyle s} is not an integer, then B p , p s ( R ) = W ¯ s , p ( R ) {\displaystyle B_{p,p}^{s}(\mathbf {R} )={\bar {W}}^{s,p}(\mathbf {R} )} , where W ¯ s , p ( R ) {\displaystyle {\bar {W}}^{s,p}(\mathbf {R} )} denotes the Sobolev–Slobodeckij space.

References

Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: