Misplaced Pages

Z-channel (information theory)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Binary asymmetric channel)
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (June 2024) (Learn how and when to remove this message)
The Z-channel sees each 0 bit of a message transmitted correctly always and each 1 bit transmitted correctly with probability 1–p, due to noise across the transmission medium.

In coding theory and information theory, a Z-channel or binary asymmetric channel is a communications channel used to model the behaviour of some data storage systems.

Definition

A Z-channel is a channel with binary input and binary output, where each 0 bit is transmitted correctly, but each 1 bit has probability p of being transmitted incorrectly as a 0, and probability 1–p of being transmitted correctly as a 1. In other words, if X and Y are the random variables describing the probability distributions of the input and the output of the channel, respectively, then the crossovers of the channel are characterized by the conditional probabilities:

Pr [ Y = 0 | X = 0 ] = 1 Pr [ Y = 0 | X = 1 ] = p Pr [ Y = 1 | X = 0 ] = 0 Pr [ Y = 1 | X = 1 ] = 1 p {\displaystyle {\begin{aligned}\operatorname {Pr} &=1\\\operatorname {Pr} &=p\\\operatorname {Pr} &=0\\\operatorname {Pr} &=1-p\end{aligned}}}

Capacity

The channel capacity c a p ( Z ) {\displaystyle {\mathsf {cap}}(\mathbb {Z} )} of the Z-channel Z {\displaystyle \mathbb {Z} } with the crossover 1 → 0 probability p, when the input random variable X is distributed according to the Bernoulli distribution with probability α {\displaystyle \alpha } for the occurrence of 0, is given by the following equation:

c a p ( Z ) = H ( 1 1 + 2 s ( p ) ) s ( p ) 1 + 2 s ( p ) = log 2 ( 1 + 2 s ( p ) ) = log 2 ( 1 + ( 1 p ) p p / ( 1 p ) ) {\displaystyle {\mathsf {cap}}(\mathbb {Z} )={\mathsf {H}}\left({\frac {1}{1+2^{{\mathsf {s}}(p)}}}\right)-{\frac {{\mathsf {s}}(p)}{1+2^{{\mathsf {s}}(p)}}}=\log _{2}(1{+}2^{-{\mathsf {s}}(p)})=\log _{2}\left(1+(1-p)p^{p/(1-p)}\right)}

where s ( p ) = H ( p ) 1 p {\displaystyle {\mathsf {s}}(p)={\frac {{\mathsf {H}}(p)}{1-p}}} for the binary entropy function H ( ) {\displaystyle {\mathsf {H}}(\cdot )} .

This capacity is obtained when the input variable X has Bernoulli distribution with probability α {\displaystyle \alpha } of having value 0 and 1 α {\displaystyle 1-\alpha } of value 1, where:

α = 1 1 ( 1 p ) ( 1 + 2 H ( p ) / ( 1 p ) ) , {\displaystyle \alpha =1-{\frac {1}{(1-p)(1+2^{{\mathsf {H}}(p)/(1-p)})}},}

For small p, the capacity is approximated by

c a p ( Z ) 1 0.5 H ( p ) {\displaystyle {\mathsf {cap}}(\mathbb {Z} )\approx 1-0.5{\mathsf {H}}(p)}

as compared to the capacity 1 H ( p ) {\displaystyle 1{-}{\mathsf {H}}(p)} of the binary symmetric channel with crossover probability p.

Calculation
c a p ( Z ) = max α { H ( Y ) H ( Y X ) } = max α { H ( Y ) x { 0 , 1 } H ( Y X = x ) P r o b { X = x } } {\displaystyle {\mathsf {cap}}(\mathbb {Z} )=\max _{\alpha }\{{\mathsf {H}}(Y)-{\mathsf {H}}(Y\mid X)\}=\max _{\alpha }{\Bigl \{}{\mathsf {H}}(Y)-\sum _{x\in \{0,1\}}{\mathsf {H}}(Y\mid X=x){\mathsf {Prob}}\{X=x\}{\Bigr \}}}
= max α { H ( ( 1 α ) ( 1 p ) ) H ( Y X = 1 ) P r o b { X = 1 } } {\displaystyle =\max _{\alpha }\{{\mathsf {H}}((1-\alpha )(1-p))-{\mathsf {H}}(Y\mid X=1){\mathsf {Prob}}\{X=1\}\}}
= max α { H ( ( 1 α ) ( 1 p ) ) ( 1 α ) H ( p ) } , {\displaystyle =\max _{\alpha }\{{\mathsf {H}}((1-\alpha )(1-p))-(1-\alpha ){\mathsf {H}}(p)\},}

To find the maximum we differentiate

d d α c a p ( Z ) = ( 1 p ) log 2 ( 1 ( 1 α ) ( 1 p ) ( 1 α ) ( 1 p ) ) + H ( p ) {\displaystyle {\frac {d}{d\alpha }}{\mathsf {cap}}(\mathbb {Z} )=-(1-p)\log _{2}\left({\frac {1-(1-\alpha )(1-p)}{(1-\alpha )(1-p)}}\right)+{\mathsf {H}}(p)}

And we see the maximum is attained for

α = 1 1 ( 1 p ) ( 1 + 2 H ( p ) / ( 1 p ) ) , {\displaystyle \alpha =1-{\frac {1}{(1-p)(1+2^{{\mathsf {H}}(p)/(1-p)})}},}

yielding the following value of c a p ( Z ) {\displaystyle {\mathsf {cap}}(\mathbb {Z} )} as a function of p

c a p ( Z ) = H ( 1 1 + 2 s ( p ) ) s ( p ) 1 + 2 s ( p ) = log 2 ( 1 + 2 s ( p ) ) = log 2 ( 1 + ( 1 p ) p p / ( 1 p ) ) where s ( p ) = H ( p ) 1 p . {\displaystyle {\mathsf {cap}}(\mathbb {Z} )={\mathsf {H}}\left({\frac {1}{1+2^{{\mathsf {s}}(p)}}}\right)-{\frac {{\mathsf {s}}(p)}{1+2^{{\mathsf {s}}(p)}}}=\log _{2}(1{+}2^{-{\mathsf {s}}(p)})=\log _{2}\left(1+(1-p)p^{p/(1-p)}\right)\;{\textrm {where}}\;{\mathsf {s}}(p)={\frac {{\mathsf {H}}(p)}{1-p}}.}

For any p, α < 0.5 {\displaystyle \alpha <0.5} (i.e. more 0s should be transmitted than 1s) because transmitting a 1 introduces noise. As p 1 {\displaystyle p\rightarrow 1} , the limiting value of α {\displaystyle \alpha } is 1 e {\displaystyle {\frac {1}{e}}} .

Bounds on the size of an asymmetric-error-correcting code

Define the following distance function d A ( x , y ) {\displaystyle {\mathsf {d}}_{A}(\mathbf {x} ,\mathbf {y} )} on the words x , y { 0 , 1 } n {\displaystyle \mathbf {x} ,\mathbf {y} \in \{0,1\}^{n}} of length n transmitted via a Z-channel

d A ( x , y ) = max { | { i x i = 0 , y i = 1 } | , | { i x i = 1 , y i = 0 } | } . {\displaystyle {\mathsf {d}}_{A}(\mathbf {x} ,\mathbf {y} ){\stackrel {\vartriangle }{=}}\max \left\{{\big |}\{i\mid x_{i}=0,y_{i}=1\}{\big |},{\big |}\{i\mid x_{i}=1,y_{i}=0\}{\big |}\right\}.}

Define the sphere V t ( x ) {\displaystyle V_{t}(\mathbf {x} )} of radius t around a word x { 0 , 1 } n {\displaystyle \mathbf {x} \in \{0,1\}^{n}} of length n as the set of all the words at distance t or less from x {\displaystyle \mathbf {x} } , in other words,

V t ( x ) = { y { 0 , 1 } n d A ( x , y ) t } . {\displaystyle V_{t}(\mathbf {x} )=\{\mathbf {y} \in \{0,1\}^{n}\mid {\mathsf {d}}_{A}(\mathbf {x} ,\mathbf {y} )\leq t\}.}

A code C {\displaystyle {\mathcal {C}}} of length n is said to be t-asymmetric-error-correcting if for any two codewords c c { 0 , 1 } n {\displaystyle \mathbf {c} \neq \mathbf {c} '\in \{0,1\}^{n}} , one has V t ( c ) V t ( c ) = {\displaystyle V_{t}(\mathbf {c} )\cap V_{t}(\mathbf {c} ')=\emptyset } . Denote by M ( n , t ) {\displaystyle M(n,t)} the maximum number of codewords in a t-asymmetric-error-correcting code of length n.

The Varshamov bound. For n≥1 and t≥1,

M ( n , t ) 2 n + 1 j = 0 t ( ( n / 2 j ) + ( n / 2 j ) ) . {\displaystyle M(n,t)\leq {\frac {2^{n+1}}{\sum _{j=0}^{t}{\left({\binom {\lfloor n/2\rfloor }{j}}+{\binom {\lceil n/2\rceil }{j}}\right)}}}.}

The constant-weight code bound. For n > 2t ≥ 2, let the sequence B0, B1, ..., Bn-2t-1 be defined as

B 0 = 2 , B i = min 0 j < i { B j + A ( n + t + i j 1 , 2 t + 2 , t + i ) } {\displaystyle B_{0}=2,\quad B_{i}=\min _{0\leq j<i}\{B_{j}+A(n{+}t{+}i{-}j{-}1,2t{+}2,t{+}i)\}} for i > 0 {\displaystyle i>0} .

Then M ( n , t ) B n 2 t 1 . {\displaystyle M(n,t)\leq B_{n-2t-1}.}

Notes

  1. MacKay (2003), p. 148.
  2. ^ MacKay (2003), p. 159.

References

  • MacKay, David J.C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge University Press. ISBN 0-521-64298-1.
  • Kløve, T. (1981). "Error correcting codes for the asymmetric channel". Technical Report 18–09–07–81. Norway: Department of Informatics, University of Bergen.
  • Verdú, S. (1997). "Channel Capacity (73.5)". The electrical engineering handbook (second ed.). IEEE Press and CRC Press. pp. 1671–1678.
  • Tallini, L.G.; Al-Bassam, S.; Bose, B. (2002). On the capacity and codes for the Z-channel. Proceedings of the IEEE International Symposium on Information Theory. Lausanne, Switzerland. p. 422.
Categories: