Misplaced Pages

Linux

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from BlackRhino GNU/Linux)

Page version status

This is an accepted version of this page

This is the latest accepted revision, reviewed on 5 January 2025. Family of Unix-like operating systems This article is about the family of operating systems. For the kernel, see Linux kernel. For other uses, see Linux (disambiguation).

Operating system
Linux
Tux the penguinTux the penguin, the mascot of Linux
DeveloperCommunity contributors,
Linus Torvalds
Written inC, assembly languages, Rust and others
OS familyUnix-like
Working stateCurrent
Source modelOpen source
Initial releaseSeptember 17, 1991; 33 years ago (1991-09-17)
Repositorygit.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
github.com/torvalds/linux
Marketing targetCloud computing, embedded devices, mainframe computers, mobile devices, personal computers, servers, supercomputers
Available inMultilingual
PlatformsAlpha, ARC, ARM, C-Sky, Hexagon, LoongArch, m68k, Microblaze, MIPS, Nios II, OpenRISC, PA-RISC, PowerPC, RISC-V, s390, SuperH, SPARC, x86, Xtensa
Kernel typeMonolithic
Userlandutil-linux by standard, various alternatively, such as Busybox, GNU, Plan 9 from User Space and Toybox
Influenced byMinix
Default
user interface
LicenseGPLv2
Official websitekernel.org
Articles in the series
Linux kernel
Linux distribution

Linux (/ˈlɪnʊks/, LIN-uuks) is a family of open-source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991, by Linus Torvalds. Linux is typically packaged as a Linux distribution (distro), which includes the kernel and supporting system software and libraries—most of which are provided by third parties—to create a complete operating system, designed as a clone of Unix and released under the copyleft GPL license.

Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses and recommends the name "GNU/Linux" to emphasize the use and importance of GNU software in many distributions, causing some controversy. Thousands of distributions exist, many based directly or indirectly on other distributions; popular Linux distributions include Debian, Fedora Linux, Linux Mint, Arch Linux, and Ubuntu, while commercial distributions include Red Hat Enterprise Linux, SUSE Linux Enterprise, and ChromeOS. Linux distributions are frequently used in server platforms. Other than the Linux kernel, key components that make up a distribution may include a display server (windowing system), a package manager, a bootloader and a Unix shell.

Linux is one of the most prominent examples of free and open-source software collaboration. While originally developed for x86 based personal computers, it has since been ported to more platforms than any other operating system, and is used on a wide variety of devices including PCs, workstations, mainframes and embedded systems. Linux is the predominant operating system for servers and is also used on all of the world's 500 fastest supercomputers. When combined with Android, which is Linux-based and designed for smartphones, they have the largest installed base of all general-purpose operating systems.

Overview

The Linux kernel was designed by Linus Torvalds, following the lack of a working kernel for GNU, a Unix-compatible operating system made entirely of free software that had been undergoing development since 1983 by Richard Stallman. A working Unix system called Minix was later released but its license was not entirely free at the time and it was made for an educative purpose. The first entirely free Unix for personal computers, 386BSD, did not appear until 1992, by which time Torvalds had already built and publicly released the first version of the Linux kernel on the Internet. Like GNU and 386BSD, Linux did not have any Unix code, being a fresh reimplementation, and therefore avoided the then legal issues. Linux distributions became popular in the 1990s and effectively made Unix technologies accessible to home users on personal computers whereas previously it had been confined to sophisticated workstations.

Desktop Linux distributions include a windowing system such as X11 or Wayland and a desktop environment such as GNOME, KDE Plasma or Xfce. Distributions intended for servers may not have a graphical user interface at all or include a solution stack such as LAMP.

The source code of Linux may be used, modified, and distributed commercially or non-commercially by anyone under the terms of its respective licenses, such as the GNU General Public License (GPL). The license means creating novel distributions is permitted by anyone and is easier than it would be for an operating system such as MacOS or Microsoft Windows. The Linux kernel, for example, is licensed under the GPLv2, with an exception for system calls that allows code that calls the kernel via system calls not to be licensed under the GPL.

Because of the dominance of Linux-based Android on smartphones, Linux, including Android, has the largest installed base of all general-purpose operating systems as of May 2022. Linux is, as of March 2024, used by around 4 percent of desktop computers. The Chromebook, which runs the Linux kernel-based ChromeOS, dominates the US K–12 education market and represents nearly 20 percent of sub-$300 notebook sales in the US. Linux is the leading operating system on servers (over 96.4% of the top one million web servers' operating systems are Linux), leads other big iron systems such as mainframe computers, and is used on all of the world's 500 fastest supercomputers (as of November 2017, having gradually displaced all competitors).

Linux also runs on embedded systems, i.e., devices whose operating system is typically built into the firmware and is highly tailored to the system. This includes routers, automation controls, smart home devices, video game consoles, televisions (Samsung and LG smart TVs), automobiles (Tesla, Audi, Mercedes-Benz, Hyundai, and Toyota), and spacecraft (Falcon 9 rocket, Dragon crew capsule, and the Ingenuity Mars helicopter).

History

Main article: History of Linux

Precursors

Linus Torvalds, principal author of the Linux kernel

The Unix operating system was conceived of and implemented in 1969, at AT&T's Bell Labs in the United States, by Ken Thompson, Dennis Ritchie, Douglas McIlroy, and Joe Ossanna. First released in 1971, Unix was written entirely in assembly language, as was common practice at the time. In 1973, in a key pioneering approach, it was rewritten in the C programming language by Dennis Ritchie (except for some hardware and I/O routines). The availability of a high-level language implementation of Unix made its porting to different computer platforms easier.

As a 1956 antitrust case forbade AT&T from entering the computer business, AT&T provided the operating system's source code to anyone who asked. As a result, Unix use grew quickly and it became widely adopted by academic institutions and businesses. In 1984, AT&T divested itself of its regional operating companies, and was released from its obligation not to enter the computer business; freed of that obligation, Bell Labs began selling Unix as a proprietary product, where users were not legally allowed to modify it.

Onyx Systems began selling early microcomputer-based Unix workstations in 1980. Later, Sun Microsystems, founded as a spin-off of a student project at Stanford University, also began selling Unix-based desktop workstations in 1982. While Sun workstations did not use commodity PC hardware, for which Linux was later originally developed, it represented the first successful commercial attempt at distributing a primarily single-user microcomputer that ran a Unix operating system.

With Unix increasingly "locked in" as a proprietary product, the GNU Project, started in 1983 by Richard Stallman, had the goal of creating a "complete Unix-compatible software system" composed entirely of free software. Work began in 1984. Later, in 1985, Stallman started the Free Software Foundation and wrote the GNU General Public License (GNU GPL) in 1989. By the early 1990s, many of the programs required in an operating system (such as libraries, compilers, text editors, a command-line shell, and a windowing system) were completed, although low-level elements such as device drivers, daemons, and the kernel, called GNU Hurd, were stalled and incomplete.

Minix was created by Andrew S. Tanenbaum, a computer science professor, and released in 1987 as a minimal Unix-like operating system targeted at students and others who wanted to learn operating system principles. Although the complete source code of Minix was freely available, the licensing terms prevented it from being free software until the licensing changed in April 2000.

Creation

While attending the University of Helsinki in the fall of 1990, Torvalds enrolled in a Unix course. The course used a MicroVAX minicomputer running Ultrix, and one of the required texts was Operating Systems: Design and Implementation by Andrew S. Tanenbaum. This textbook included a copy of Tanenbaum's Minix operating system. It was with this course that Torvalds first became exposed to Unix. In 1991, he became curious about operating systems. Frustrated by the licensing of Minix, which at the time limited it to educational use only, he began to work on his operating system kernel, which eventually became the Linux kernel.

On July 3, 1991, to implement Unix system calls, Linus Torvalds attempted unsuccessfully to obtain a digital copy of the POSIX standards documentation with a request to the comp.os.minix newsgroup. After not finding the POSIX documentation, Torvalds initially resorted to determining system calls from SunOS documentation owned by the university for use in operating its Sun Microsystems server. He also learned some system calls from Tanenbaum's Minix text.

Torvalds began the development of the Linux kernel on Minix and applications written for Minix were also used on Linux. Later, Linux matured and further Linux kernel development took place on Linux systems. GNU applications also replaced all Minix components, because it was advantageous to use the freely available code from the GNU Project with the fledgling operating system; code licensed under the GNU GPL can be reused in other computer programs as long as they also are released under the same or a compatible license. Torvalds initiated a switch from his original license, which prohibited commercial redistribution, to the GNU GPL. Developers worked to integrate GNU components with the Linux kernel, creating a fully functional and free operating system.

Although not released until 1992, due to legal complications, the development of 386BSD, from which NetBSD, OpenBSD and FreeBSD descended, predated that of Linux. Linus Torvalds has stated that if the GNU kernel or 386BSD had been available in 1991, he probably would not have created Linux.

Naming

5.25-inch floppy disks holding a very early version of Linux

Linus Torvalds had wanted to call his invention "Freax", a portmanteau of "free", "freak", and "x" (as an allusion to Unix). During the start of his work on the system, some of the project's makefiles included the name "Freax" for about half a year. Torvalds considered the name "Linux" but dismissed it as too egotistical.

To facilitate development, the files were uploaded to the FTP server of FUNET in September 1991. Ari Lemmke, Torvalds' coworker at the Helsinki University of Technology (HUT) who was one of the volunteer administrators for the FTP server at the time, did not think that "Freax" was a good name, so he named the project "Linux" on the server without consulting Torvalds. Later, however, Torvalds consented to "Linux".

According to a newsgroup post by Torvalds, the word "Linux" should be pronounced (/ˈlɪnʊks/ LIN-uuks) with a short 'i' as in 'print' and 'u' as in 'put'. To further demonstrate how the word "Linux" should be pronounced, he included an audio guide with the kernel source code. However, in this recording, he pronounces Linux as /ˈlinʊks/ (LEEN-uuks) with a short but close front unrounded vowel, instead of a near-close near-front unrounded vowel as in his newsgroup post.

Commercial and popular uptake

Main article: Linux adoptionFrom top-left clockwise: Nexus 5X running Android, Chromebooks, server platform, In-flight entertainment system

The adoption of Linux in production environments, rather than being used only by hobbyists, started to take off first in the mid-1990s in the supercomputing community, where organizations such as NASA started to replace their increasingly expensive machines with clusters of inexpensive commodity computers running Linux. Commercial use began when Dell and IBM, followed by Hewlett-Packard, started offering Linux support to escape Microsoft's monopoly in the desktop operating system market.

Today, Linux systems are used throughout computing, from embedded systems to virtually all supercomputers, and have secured a place in server installations such as the popular LAMP application stack. The use of Linux distributions in home and enterprise desktops has been growing.

Linux distributions have also become popular in the netbook market, with many devices shipping with customized Linux distributions installed, and Google releasing their own ChromeOS designed for netbooks.

Linux's greatest success in the consumer market is perhaps the mobile device market, with Android being the dominant operating system on smartphones and very popular on tablets and, more recently, on wearables. Linux gaming is also on the rise with Valve showing its support for Linux and rolling out SteamOS, its own gaming-oriented Linux distribution, which was later implemented in their Steam Deck platform. Linux distributions have also gained popularity with various local and national governments, such as the federal government of Brazil.

Development

Linus Torvalds is the lead maintainer for the Linux kernel and guides its development, while Greg Kroah-Hartman is the lead maintainer for the stable branch. Zoë Kooyman is the executive director of the Free Software Foundation, which in turn supports the GNU components. Finally, individuals and corporations develop third-party non-GNU components. These third-party components comprise a vast body of work and may include both kernel modules and user applications and libraries.

Linux vendors and communities combine and distribute the kernel, GNU components, and non-GNU components, with additional package management software in the form of Linux distributions.

Design

See also: Linux kernel § Architecture and features

Many developers of open-source software agree that the Linux kernel was not designed but rather evolved through natural selection. Torvalds considers that although the design of Unix served as a scaffolding, "Linux grew with a lot of mutations – and because the mutations were less than random, they were faster and more directed than alpha-particles in DNA." Eric S. Raymond considers Linux's revolutionary aspects to be social, not technical: before Linux, complex software was designed carefully by small groups, but "Linux evolved in a completely different way. From nearly the beginning, it was rather casually hacked on by huge numbers of volunteers coordinating only through the Internet. Quality was maintained not by rigid standards or autocracy but by the naively simple strategy of releasing every week and getting feedback from hundreds of users within days, creating a sort of rapid Darwinian selection on the mutations introduced by developers." Bryan Cantrill, an engineer of a competing OS, agrees that "Linux wasn't designed, it evolved", but considers this to be a limitation, proposing that some features, especially those related to security, cannot be evolved into, "this is not a biological system at the end of the day, it's a software system."

A Linux-based system is a modular Unix-like operating system, deriving much of its basic design from principles established in Unix during the 1970s and 1980s. Such a system uses a monolithic kernel, the Linux kernel, which handles process control, networking, access to the peripherals, and file systems. Device drivers are either integrated directly with the kernel or added as modules that are loaded while the system is running.

The GNU userland is a key part of most systems based on the Linux kernel, with Android being the notable exception. The GNU C library, an implementation of the C standard library, works as a wrapper for the system calls of the Linux kernel necessary to the kernel-userspace interface, the toolchain is a broad collection of programming tools vital to Linux development (including the compilers used to build the Linux kernel itself), and the coreutils implement many basic Unix tools. The GNU Project also develops Bash, a popular CLI shell. The graphical user interface (or GUI) used by most Linux systems is built on top of an implementation of the X Window System. More recently, some of the Linux community has sought to move to using Wayland as the display server protocol, replacing X11.

Many other open-source software projects contribute to Linux systems.

Various layers within Linux, also showing separation between the userland and kernel space
User mode User applications bash, LibreOffice, GIMP, Blender, 0 A.D., Mozilla Firefox, ...
System components init daemon:
OpenRC, runit, systemd...
System daemons:
polkitd, smbd, sshd, udevd...
Window manager:
X11, Wayland, SurfaceFlinger (Android)
Graphics:
Mesa, AMD Catalyst, ...
Other libraries:
GTK, Qt, EFL, SDL, SFML, FLTK, GNUstep, ...
C standard library fopen, execv, malloc, memcpy, localtime, pthread_create... (up to 2000 subroutines)
glibc aims to be fast, musl aims to be lightweight, uClibc targets embedded systems, bionic was written for Android, etc. All aim to be POSIX/SUS-compatible.
Kernel mode Linux kernel stat, splice, dup, read, open, ioctl, write, mmap, close, exit, etc. (about 380 system calls)
The Linux kernel System Call Interface (SCI), aims to be POSIX/SUS-compatible
Process scheduling subsystem IPC subsystem Memory management subsystem Virtual files subsystem Networking subsystem
Other components: ALSA, DRI, evdev, klibc, LVM, device mapper, Linux Network Scheduler, Netfilter
Linux Security Modules: SELinux, TOMOYO, AppArmor, Smack
Hardware (CPU, main memory, data storage devices, etc.)

Installed components of a Linux system include the following:

  • A bootloader, for example GNU GRUB, LILO, SYSLINUX or systemd-boot. This is a program that loads the Linux kernel into the computer's main memory, by being executed by the computer when it is turned on and after the firmware initialization is performed.
  • An init program, such as the traditional sysvinit and the newer systemd, OpenRC and Upstart. This is the first process launched by the Linux kernel, and is at the root of the process tree. It starts processes such as system services and login prompts (whether graphical or in terminal mode).
  • Software libraries, which contain code that can be used by running processes. On Linux systems using ELF-format executable files, the dynamic linker that manages the use of dynamic libraries is known as ld-linux.so. If the system is set up for the user to compile software themselves, header files will also be included to describe the programming interface of installed libraries. Besides the most commonly used software library on Linux systems, the GNU C Library (glibc), there are numerous other libraries, such as SDL and Mesa.
    • The C standard library is the library necessary to run programs written in C on a computer system, with the GNU C Library being the standard. It provides an implementation of the POSIX API, as well as extensions to that API. For embedded systems, alternatives such as musl, EGLIBC (a glibc fork once used by Debian) and uClibc (which was designed for uClinux) have been developed, although the last two are no longer maintained. Android uses its own C library, Bionic. However, musl can additionally be used as a replacement for glibc on desktop and laptop systems, as seen on certain Linux distributions like Void Linux.
  • Basic Unix commands, with GNU coreutils being the standard implementation. Alternatives exist for embedded systems, such as the copyleft BusyBox, and the BSD-licensed Toybox.
  • Widget toolkits are the libraries used to build graphical user interfaces (GUIs) for software applications. Numerous widget toolkits are available, including GTK and Clutter developed by the GNOME Project, Qt developed by the Qt Project and led by The Qt Company, and Enlightenment Foundation Libraries (EFL) developed primarily by the Enlightenment team.
  • A package management system, such as dpkg and RPM. Alternatively packages can be compiled from binary or source tarballs.
  • User interface programs such as command shells or windowing environments.

User interface

The user interface, also known as the shell, is either a command-line interface (CLI), a graphical user interface (GUI), or controls attached to the associated hardware, which is common for embedded systems. For desktop systems, the default user interface is usually graphical, although the CLI is commonly available through terminal emulator windows or on a separate virtual console.

CLI shells are text-based user interfaces, which use text for both input and output. The dominant shell used in Linux is the Bourne-Again Shell (bash), originally developed for the GNU Project; other shells such as Zsh are also used. Most low-level Linux components, including various parts of the userland, use the CLI exclusively. The CLI is particularly suited for automation of repetitive or delayed tasks and provides very simple inter-process communication.

Debian running the Xfce desktop environment
Fedora Linux running the Plasma desktop environment

On desktop systems, the most popular user interfaces are the GUI shells, packaged together with extensive desktop environments, such as KDE Plasma, GNOME, MATE, Cinnamon, LXDE, Pantheon, and Xfce, though a variety of additional user interfaces exist. Most popular user interfaces are based on the X Window System, often simply called "X" or "X11". It provides network transparency and permits a graphical application running on one system to be displayed on another where a user may interact with the application; however, certain extensions of the X Window System are not capable of working over the network. Several X display servers exist, with the reference implementation, X.Org Server, being the most popular.

I3 Tiling window manager

Several types of window managers exist for X11, including tiling, dynamic, stacking, and compositing. Window managers provide means to control the placement and appearance of individual application windows, and interact with the X Window System. Simpler X window managers such as dwm, ratpoison, or i3wm provide a minimalist functionality, while more elaborate window managers such as FVWM, Enlightenment, or Window Maker provide more features such as a built-in taskbar and themes, but are still lightweight when compared to desktop environments. Desktop environments include window managers as part of their standard installations, such as Mutter (GNOME), KWin (KDE), or Xfwm (xfce), although users may choose to use a different window manager if preferred.

Wayland is a display server protocol intended as a replacement for the X11 protocol; as of 2022, it has received relatively wide adoption. Unlike X11, Wayland does not need an external window manager and compositing manager. Therefore, a Wayland compositor takes the role of the display server, window manager, and compositing manager. Weston is the reference implementation of Wayland, while GNOME's Mutter and KDE's KWin are being ported to Wayland as standalone display servers. Enlightenment has already been successfully ported since version 19. Additionally, many window managers have been made for Wayland, such as Sway or Hyprland, as well as other graphical utilities such as Waybar or Rofi.

Video input infrastructure

Main article: Video4Linux

Linux currently has two modern kernel-userspace APIs for handling video input devices: V4L2 API for video streams and radio, and DVB API for digital TV reception.

Due to the complexity and diversity of different devices, and due to the large number of formats and standards handled by those APIs, this infrastructure needs to evolve to better fit other devices. Also, a good userspace device library is the key to the success of having userspace applications to be able to work with all formats supported by those devices.

Development

Simplified history of Unix-like operating systems. Linux shares similar architecture and concepts (as part of the POSIX standard) but does not share non-free source code with the original Unix or Minix.
Main articles: Linux distribution and Free software

The primary difference between Linux and many other popular contemporary operating systems is that the Linux kernel and other components are free and open-source software. Linux is not the only such operating system, although it is by far the most widely used. Some free and open-source software licenses are based on the principle of copyleft, a kind of reciprocity: any work derived from a copyleft piece of software must also be copyleft itself. The most common free software license, the GNU General Public License (GPL), is a form of copyleft and is used for the Linux kernel and many of the components from the GNU Project.

Linux-based distributions are intended by developers for interoperability with other operating systems and established computing standards. Linux systems adhere to POSIX, Single UNIX Specification (SUS), Linux Standard Base (LSB), ISO, and ANSI standards where possible, although to date only one Linux distribution has been POSIX.1 certified, Linux-FT.

Free software projects, although developed through collaboration, are often produced independently of each other. The fact that the software licenses explicitly permit redistribution, however, provides a basis for larger-scale projects that collect the software produced by stand-alone projects and make it available all at once in the form of a Linux distribution.

Many Linux distributions manage a remote collection of system software and application software packages available for download and installation through a network connection. This allows users to adapt the operating system to their specific needs. Distributions are maintained by individuals, loose-knit teams, volunteer organizations, and commercial entities. A distribution is responsible for the default configuration of the installed Linux kernel, general system security, and more generally integration of the different software packages into a coherent whole. Distributions typically use a package manager such as apt, yum, zypper, pacman or portage to install, remove, and update all of a system's software from one central location.

Community

See also: Free software movement and Linux user group

A distribution is largely driven by its developer and user communities. Some vendors develop and fund their distributions on a volunteer basis, Debian being a well-known example. Others maintain a community version of their commercial distributions, as Red Hat does with Fedora, and SUSE does with openSUSE.

In many cities and regions, local associations known as Linux User Groups (LUGs) seek to promote their preferred distribution and by extension free software. They hold meetings and provide free demonstrations, training, technical support, and operating system installation to new users. Many Internet communities also provide support to Linux users and developers. Most distributions and free software / open-source projects have IRC chatrooms or newsgroups. Online forums are another means of support, with notable examples being Unix & Linux Stack Exchange, LinuxQuestions.org and the various distribution-specific support and community forums, such as ones for Ubuntu, Fedora, Arch Linux, Gentoo, etc. Linux distributions host mailing lists; commonly there will be a specific topic such as usage or development for a given list.

There are several technology websites with a Linux focus. Print magazines on Linux often bundle cover disks that carry software or even complete Linux distributions.

Although Linux distributions are generally available without charge, several large corporations sell, support, and contribute to the development of the components of the system and free software. An analysis of the Linux kernel in 2017 showed that well over 85% of the code was developed by programmers who are being paid for their work, leaving about 8.2% to unpaid developers and 4.1% unclassified. Some of the major corporations that provide contributions include Intel, Samsung, Google, AMD, Oracle, and Facebook. Several corporations, notably Red Hat, Canonical, and SUSE have built a significant business around Linux distributions.

The free software licenses, on which the various software packages of a distribution built on the Linux kernel are based, explicitly accommodate and encourage commercialization; the relationship between a Linux distribution as a whole and individual vendors may be seen as symbiotic. One common business model of commercial suppliers is charging for support, especially for business users. A number of companies also offer a specialized business version of their distribution, which adds proprietary support packages and tools to administer higher numbers of installations or to simplify administrative tasks.

Another business model is to give away the software to sell hardware. This used to be the norm in the computer industry, with operating systems such as CP/M, Apple DOS, and versions of the classic Mac OS before 7.6 freely copyable (but not modifiable). As computer hardware standardized throughout the 1980s, it became more difficult for hardware manufacturers to profit from this tactic, as the OS would run on any manufacturer's computer that shared the same architecture.

Programming on Linux

Most programming languages support Linux either directly or through third-party community based ports. The original development tools used for building both Linux applications and operating system programs are found within the GNU toolchain, which includes the GNU Compiler Collection (GCC) and the GNU Build System. Amongst others, GCC provides compilers for Ada, C, C++, Go and Fortran. Many programming languages have a cross-platform reference implementation that supports Linux, for example PHP, Perl, Ruby, Python, Java, Go, Rust and Haskell. First released in 2003, the LLVM project provides an alternative cross-platform open-source compiler for many languages. Proprietary compilers for Linux include the Intel C++ Compiler, Sun Studio, and IBM XL C/C++ Compiler. BASIC is available in procedural form from QB64, PureBasic, Yabasic, GLBasic, Basic4GL, XBasic, wxBasic, SdlBasic, and Basic-256, as well as object oriented through Gambas, FreeBASIC, B4X, Basic for Qt, Phoenix Object Basic, NS Basic, ProvideX, Chipmunk Basic, RapidQ and Xojo. Pascal is implemented through GNU Pascal, Free Pascal, and Virtual Pascal, as well as graphically via Lazarus, PascalABC.NET, or Delphi using FireMonkey (previously through Borland Kylix).

A common feature of Unix-like systems, Linux includes traditional specific-purpose programming languages targeted at scripting, text processing and system configuration and management in general. Linux distributions support shell scripts, awk, sed and make. Many programs also have an embedded programming language to support configuring or programming themselves. For example, regular expressions are supported in programs like grep and locate, the traditional Unix message transfer agent Sendmail contains its own Turing complete scripting system, and the advanced text editor GNU Emacs is built around a general purpose Lisp interpreter.

Most distributions also include support for PHP, Perl, Ruby, Python and other dynamic languages. While not as common, Linux also supports C# and other CLI languages (via Mono), Vala, and Scheme. Guile Scheme acts as an extension language targeting the GNU system utilities, seeking to make the conventionally small, static, compiled C programs of Unix design rapidly and dynamically extensible via an elegant, functional high-level scripting system; many GNU programs can be compiled with optional Guile bindings to this end. A number of Java virtual machines and development kits run on Linux, including the original Sun Microsystems JVM (HotSpot), and IBM's J2SE RE, as well as many open-source projects like Kaffe and Jikes RVM; Kotlin, Scala, Groovy and other JVM languages are also available.

GNOME and KDE are popular desktop environments and provide a framework for developing applications. These projects are based on the GTK and Qt widget toolkits, respectively, which can also be used independently of the larger framework. Both support a wide variety of languages. There are a number of Integrated development environments available including Anjuta, Code::Blocks, CodeLite, Eclipse, Geany, ActiveState Komodo, KDevelop, Lazarus, MonoDevelop, NetBeans, and Qt Creator, while the long-established editors Vim, nano and Emacs remain popular.

Hardware support

Linux is ubiquitously found on various types of hardware.
See also: List of Linux-supported computer architectures

The Linux kernel is a widely ported operating system kernel, available for devices ranging from mobile phones to supercomputers; it runs on a highly diverse range of computer architectures, including ARM-based Android smartphones and the IBM Z mainframes. Specialized distributions and kernel forks exist for less mainstream architectures; for example, the ELKS kernel fork can run on Intel 8086 or Intel 80286 16-bit microprocessors, while the μClinux kernel fork may run on systems without a memory management unit. The kernel also runs on architectures that were only ever intended to use a proprietary manufacturer-created operating system, such as Macintosh computers (with PowerPC, Intel, and Apple silicon processors), PDAs, video game consoles, portable music players, and mobile phones.

Linux has a reputation for supporting old hardware very well by maintaining standardized drivers for a long time. There are several industry associations and hardware conferences devoted to maintaining and improving support for diverse hardware under Linux, such as FreedomHEC. Over time, support for different hardware has improved in Linux, resulting in any off-the-shelf purchase having a "good chance" of being compatible.

In 2014, a new initiative was launched to automatically collect a database of all tested hardware configurations.

Uses

Main article: Linux range of use

Market share and uptake

Main article: Linux adoption See also: Usage share of operating systems

Many quantitative studies of free/open-source software focus on topics including market share and reliability, with numerous studies specifically examining Linux. The Linux market is growing, and the Linux operating system market size is expected to see a growth of 19.2% by 2027, reaching $15.64 billion, compared to $3.89 billion in 2019. Analysts project a Compound Annual Growth Rate (CAGR) of 13.7% between 2024 and 2032, culminating in a market size of US$34.90 billion by the latter year. Analysts and proponents attribute the relative success of Linux to its security, reliability, low cost, and freedom from vendor lock-in.

Desktops and laptops
According to web server statistics (that is, based on the numbers recorded from visits to websites by client devices), in October 2024, the estimated market share of Linux on desktop computers was around 4.3%. In comparison, Microsoft Windows had a market share of around 73.4%, while macOS covered around 15.5%.
Web servers
W3Cook publishes stats that use the top 1,000,000 Alexa domains, which as of May 2015 estimate that 96.55% of web servers run Linux, 1.73% run Windows, and 1.72% run FreeBSD.
W3Techs publishes stats that use the top 10,000,000 Alexa domains and the top 1,000,000 Tranco domains, updated monthly and as of November 2020 estimate that Linux is used by 39% of the web servers, versus 21.9% being used by Microsoft Windows. 40.1% used other types of Unix.
IDC's Q1 2007 report indicated that Linux held 12.7% of the overall server market at that time; this estimate was based on the number of Linux servers sold by various companies, and did not include server hardware purchased separately that had Linux installed on it later.

As of 2024, estimates suggest Linux accounts for at least 80% of the public cloud workload, partly thanks to its widespread use in platforms like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform.

ZDNet report that 96.3% of the top one million web servers are running Linux. W3Techs state that Linux powers at least 39.2% of websites whose operating system is known, with other estimates saying 55%.

Mobile devices
Android, which is based on the Linux kernel, has become the dominant operating system for smartphones. In April 2023, 68.61% of mobile devices accessing websites using StatCounter were from Android. Android is also a popular operating system for tablets, being responsible for more than 60% of tablet sales as of 2013. According to web server statistics, as of October 2021 Android has a market share of about 71%, with iOS holding 28%, and the remaining 1% attributed to various niche platforms.
Film production
For years, Linux has been the platform of choice in the film industry. The first major film produced on Linux servers was 1997's Titanic. Since then major studios including DreamWorks Animation, Pixar, Weta Digital, and Industrial Light & Magic have migrated to Linux. According to the Linux Movies Group, more than 95% of the servers and desktops at large animation and visual effects companies use Linux.
Use in government
Linux distributions have also gained popularity with various local and national governments. News of the Russian military creating its own Linux distribution has also surfaced, and has come to fruition as the G.H.ost Project. The Indian state of Kerala has gone to the extent of mandating that all state high schools run Linux on their computers. China uses Linux exclusively as the operating system for its Loongson processor family to achieve technology independence. In Spain, some regions have developed their own Linux distributions, which are widely used in education and official institutions, like gnuLinEx in Extremadura and Guadalinex in Andalusia. France and Germany have also taken steps toward the adoption of Linux. North Korea's Red Star OS, developed as of 2002, is based on a version of Fedora Linux.

Copyright, trademark, and naming

See also: GNU/Linux naming controversy and SCO–Linux disputes

The Linux kernel is licensed under the GNU General Public License (GPL), version 2. The GPL requires that anyone who distributes software based on source code under this license must make the originating source code (and any modifications) available to the recipient under the same terms. Other key components of a typical Linux distribution are also mainly licensed under the GPL, but they may use other licenses; many libraries use the GNU Lesser General Public License (LGPL), a more permissive variant of the GPL, and the X.Org implementation of the X Window System uses the MIT License.

Torvalds states that the Linux kernel will not move from version 2 of the GPL to version 3. He specifically dislikes some provisions in the new license which prohibit the use of the software in digital rights management. It would also be impractical to obtain permission from all the copyright holders, who number in the thousands.

A 2001 study of Red Hat Linux 7.1 found that this distribution contained 30 million source lines of code. Using the Constructive Cost Model, the study estimated that this distribution required about eight thousand person-years of development time. According to the study, if all this software had been developed by conventional proprietary means, it would have cost about US$1.82 billion to develop in 2023 in the United States. Most of the source code (71%) was written in the C programming language, but many other languages were used, including C++, Lisp, assembly language, Perl, Python, Fortran, and various shell scripting languages. Slightly over half of all lines of code were licensed under the GPL. The Linux kernel itself was 2.4 million lines of code, or 8% of the total.

In a later study, the same analysis was performed for Debian version 4.0 (etch, which was released in 2007). This distribution contained close to 283 million source lines of code, and the study estimated that it would have required about seventy three thousand man-years and cost US$10.2 billion (in 2023 dollars) to develop by conventional means.

The name "Linux" is also used for a laundry detergent made by Swiss company Rösch.

In the United States, the name Linux is a trademark registered to Linus Torvalds. Initially, nobody registered it. However, on August 15, 1994, William R. Della Croce Jr. filed for the trademark Linux, and then demanded royalties from Linux distributors. In 1996, Torvalds and some affected organizations sued him to have the trademark assigned to Torvalds, and, in 1997, the case was settled. The licensing of the trademark has since been handled by the Linux Mark Institute (LMI). Torvalds has stated that he trademarked the name only to prevent someone else from using it. LMI originally charged a nominal sublicensing fee for use of the Linux name as part of trademarks, but later changed this in favor of offering a free, perpetual worldwide sublicense.

Tux sometimes is stylized with incorporation of the GNU logo

The Free Software Foundation (FSF) prefers GNU/Linux as the name when referring to the operating system as a whole, because it considers Linux distributions to be variants of the GNU operating system initiated in 1983 by Richard Stallman, president of the FSF. The foundation explicitly takes no issue over the name Android for the Android OS, which is also an operating system based on the Linux kernel, as GNU is not a part of it.

A minority of public figures and software projects other than Stallman and the FSF, notably distributions consisting of only free software, such as Debian (which had been sponsored by the FSF up to 1996), also use GNU/Linux when referring to the operating system as a whole. Most media and common usage, however, refers to this family of operating systems simply as Linux, as do many large Linux distributions (for example, SUSE Linux and Red Hat Enterprise Linux).

As of May 2011, about 8% to 13% of the lines of code of the Linux distribution Ubuntu (version "Natty") is made of GNU components (the range depending on whether GNOME is considered part of GNU); meanwhile, 6% is taken by the Linux kernel, increased to 9% when including its direct dependencies.

See also

Portals:

Notes

  1. util-linux is the standard set of utilities for use as part of the Linux operating system.
  2. BusyBox is a userland written with size-optimization and limited resources in mind, used in many embedded Linux distributions. BusyBox replaces most GNU Core Utilities. One notable Desktop distribution using BusyBox is Alpine Linux.
  3. GNU is a userland used in various Linux distributions. The GNU userland contains system daemons, user applications, the GUI, and various libraries. GNU Core Utilities are an essential part of most distributions. Most Linux distributions use the X Window system. Other components of the userland, such as the widget toolkit, vary with the specific distribution, desktop environment, and user configuration.
  4. Plan 9 from User Space (aka plan9port) is a port of many Plan 9 libraries and programs from their native Plan 9 environment to Unix-like operating systems, including Linux and FreeBSD.
  5. Toybox is a userland that combines over 200 Unix command line utilities together into a single BSD-licensed executable. After a talk at the 2013 Embedded Linux Conference, Google merged toybox into AOSP and began shipping toybox in Android Marshmallow in 2015.
  6. The name "Linux" itself is a trademark owned by Linus Torvalds and administered by the Linux Mark Institute.
  7. As measured by the TOP500 list, which uses HPL to measure computational power
  8. As measured by the TOP500 list, which uses HPL to measure computational power

References

  1. Linux Online (2008). "Linux Logos and Mascots". Archived from the original on August 15, 2010. Retrieved August 11, 2009.
  2. "The util-linux code repository". GitHub. Retrieved October 31, 2024.
  3. "The Busybox about page". busybox.net. Archived from the original on November 27, 2021. Retrieved November 30, 2021.
  4. "The Alpine Linux about page". alpinelinux.org. Archived from the original on May 8, 2011. Retrieved November 30, 2021.
  5. "GNU Userland". April 10, 2012. Archived from the original on March 8, 2016.
  6. "Unix Fundamentals — System Administration for Cyborgs". Archived from the original on October 5, 2016.
  7. "Operating Systems — Introduction to Information and Communication Technology". Archived from the original on February 21, 2016.
  8. "The X Window System". Archived from the original on January 20, 2016.
  9. "PCLinuxOS Magazine – HTML". Archived from the original on May 15, 2013.
  10. "Plan 9 from User Space". Retrieved October 31, 2024.
  11. "The Plan 9 from User Space code repository". GitHub. Retrieved October 31, 2024.
  12. Landley, Robert. "What is ToyBox?". Toybox project website. Retrieved October 31, 2024.
  13. "The Linux Kernel Archives: Frequently asked questions". kernel.org. September 2, 2014. Archived from the original on September 5, 2015. Retrieved September 4, 2015.
  14. ^ "U.S. Reg No: 1916230". United States Patent and Trademark Office. Archived from the original on June 24, 2013. Retrieved April 1, 2006.
  15. ^ "Re: How to pronounce Linux?". Newsgroupcomp.os.linux. April 23, 1992. Usenet: 1992Apr23.123216.22024@klaava.Helsinki.FI. Retrieved January 9, 2007.
  16. Eckert, Jason W. (2012). Linux+ Guide to Linux Certification (Third ed.). Boston, Massachusetts: Cengage Learning. p. 33. ISBN 978-1111541538. Archived from the original on May 9, 2013. Retrieved April 14, 2013. The shared commonality of the kernel is what defines a system's membership in the Linux family; the differing OSS applications that can interact with the common kernel are what differentiate Linux distributions.
  17. "Twenty Years of Linux according to Linus Torvalds". ZDNet. April 13, 2011. Archived from the original on September 19, 2016. Retrieved September 19, 2016.
  18. Linus Benedict Torvalds (October 5, 1991). "Free minix-like kernel sources for 386-AT". Newsgroupcomp.os.minix. Archived from the original on March 2, 2013. Retrieved September 30, 2011.
  19. "What Is Linux: An Overview of the Linux Operating System". Medium. Archived from the original on June 12, 2020. Retrieved December 21, 2019.
  20. "Mac, Windows And Now, Linux". The New York Times. October 8, 1998. Retrieved December 4, 2024.
  21. ^ "GNU/Linux FAQ". Gnu.org. Archived from the original on September 7, 2013. Retrieved September 1, 2013.
  22. ^ "Linux and the GNU System". Gnu.org. Archived from the original on March 19, 2017. Retrieved September 1, 2013.
  23. "Major Distributions An overview of major Linux distributions and FreeBSD". Distrowatch.
  24. Andrus, Brian (July 8, 2024). "Top 12 Most Popular Linux Distros". DreamHost Blog. Retrieved November 15, 2024.
  25. DistroWatch. "DistroWatch.com: Put the fun back into computing. Use Linux, BSD". distrowatch.com. Archived from the original on April 2, 2013. Retrieved December 30, 2016.
  26. himanshu, Swapnil. "Best Linux distros of 2016: Something for everyone". CIO. Archived from the original on December 31, 2016. Retrieved February 1, 2022.
  27. "10 Top Most Popular Linux Distributions of 2016". www.tecmint.com. Archived from the original on December 30, 2016. Retrieved December 30, 2016.
  28. Ha, Dan (February 28, 2023). "9 reasons Linux is a popular choice for servers". LogicMonitor. Retrieved December 11, 2024.
  29. "Linux OS on IBM Z Mainframe". www.ibm.com. Retrieved December 11, 2024.
  30. Barry Levine (August 26, 2013). "Linux' 22th [sic] Birthday Is Commemorated - Subtly - by Creator". Simpler Media Group, Inc. Archived from the original on May 18, 2015. Retrieved May 10, 2015. Originally developed for Intel x86-based PCs, Torvalds' "hobby" has now been released for more hardware platforms than any other OS in history.
  31. ^ Linksvayer, Mike (1993). "The Choice of a GNU Generation – An Interview With Linus Torvalds". Meta magazine. Archived from the original on February 25, 2009. Retrieved January 20, 2009.
  32. Bentson, Randolph. "The Humble Beginnings of Linux". dl.acm.org. Retrieved November 21, 2024.
  33. "History of Unix, BSD, GNU, and Linux - CrystalLabs — Davor Ocelic's Blog". crystallabs.io. Retrieved November 22, 2024.
  34. "LINUX: UNIX POWER FOR PEANUTS". Washington Post. May 22, 1995.
  35. ^ "What is Linux?". Opensource.com. Archived from the original on May 13, 2020. Retrieved May 12, 2020.
  36. "Various Licenses and Comments about Them - GNU Project - Free Software Foundation". www.gnu.org. Retrieved November 15, 2024.
  37. "GNU General Public License". GNU.org.
  38. Casad, Joe. "Copyleft » Linux Magazine". Linux Magazine. Retrieved November 15, 2024.
  39. "Linux kernel licensing rules". Linux kernel documentation. Archived from the original on September 6, 2022. Retrieved June 17, 2022.
  40. Linux-syscall-note on GitHub
  41. "Operating System Market Share Worldwide". StatCounter Global Stats. Archived from the original on February 15, 2020. Retrieved October 18, 2020.
  42. McPherson, Amanda (December 13, 2012). "What a Year for Linux: Please Join us in Celebration". Linux Foundation. Archived from the original on April 17, 2014. Retrieved April 16, 2014.
  43. Linux Devices (November 28, 2006). "Trolltech rolls "complete" Linux smartphone stack". Archived from the original on May 25, 2012. Retrieved January 12, 2017.
  44. ^ "Desktop Operating System Market Share Worldwide". StatCounter Global Stats. Archived from the original on March 21, 2024. Retrieved March 23, 2024.
  45. "ChromeOS Kernel" (PDF). kernel-recipes.org.
  46. "How the Google Chrome OS Works". HowStuffWorks. June 30, 2010. Retrieved December 11, 2024.
  47. Steven J. Vaughan-Nichols. "Chromebook shipments leap by 67 percent". ZDNet. Archived from the original on September 29, 2015. Retrieved September 29, 2015.
  48. "OS Market Share and Usage Trends". W3Cook.com. Archived from the original on August 6, 2015.
  49. Thibodeau, Patrick (2009). "IBM's newest mainframe is all Linux". Computerworld (published December 9, 2009). Archived from the original on November 11, 2016. Retrieved February 22, 2009.
  50. Vaughan-Nichols, Steven J. (2017). "Linux totally dominates supercomputers". ZDNet (published November 14, 2017). Archived from the original on November 14, 2017. Retrieved October 25, 2018.
  51. ^ Lyons, Daniel (March 15, 2005). "Linux rules supercomputers". Forbes. Archived from the original on February 24, 2007. Retrieved February 22, 2007.
  52. Eric Brown (March 29, 2019). "Linux continues advance in smart TV market". linuxgizmos.com. Archived from the original on June 29, 2020. Retrieved May 15, 2020.
  53. "Sony Open Source Code Distribution Service". Sony Electronics. Archived from the original on October 4, 2011. Retrieved October 8, 2011.
  54. "Sharp Liquid Crystal Television Instruction Manual" (PDF). Sharp Electronics. p. 24. Archived from the original (PDF) on January 11, 2012. Retrieved October 8, 2011.
  55. Steven J. Vaughan-Nichols (January 4, 2019). "It's a Linux-powered car world". ZDNet. Archived from the original on August 3, 2020. Retrieved May 15, 2020.
  56. "From Earth to orbit with Linux and SpaceX". ZDNet. Archived from the original on August 3, 2020. Retrieved June 6, 2020.
  57. "Linux on Mars!". IT PRO. August 18, 2021. Archived from the original on May 19, 2022. Retrieved June 30, 2022.
  58. Ritchie, D.M. (October 1984), "The UNIX System: The Evolution of the UNIX Time-sharing System", AT&T Bell Laboratories Technical Journal, 63 (8): 1577, doi:10.1002/j.1538-7305.1984.tb00054.x, S2CID 571269, However, UNIX was born in 1969 ...
  59. Meeker, Heather (September 21, 2017). "Open source licensing: What every technologist should know". Opensource.com. Archived from the original on September 24, 2017. Retrieved September 24, 2017.
  60. "AT&T Breakup II: Highlights in the History of a Telecommunications Giant". Los Angeles Times. September 21, 1995.
  61. Michael Vetter (August 10, 2021). Acquisitions and Open Source Software Development. Springer Nature. p. 13. ISBN 978-3-658-35084-0. Archived from the original on August 5, 2022. Retrieved August 5, 2022.
  62. Christopher Tozzi (August 11, 2017). For Fun and Profit: A History of the Free and Open Source Software Revolution. MIT Press. p. 52. ISBN 978-0-262-03647-4. Archived from the original on August 5, 2022. Retrieved August 5, 2022.
  63. Eric, S. Raymond (October 1999). The Cathedral and the Bazaar. Sebastopol, California: O'Reilly & Associates, Inc. p. 12. ISBN 0-596-00108-8. Archived from the original on July 18, 2022. Retrieved July 21, 2022. In 1982, a group of Unix hackers from Stanford and Berkeley founded Sun Microsystems on the belief that Unix running on relatively inexpensive 68000-based hardware would prove a winning combination for a wide variety of applications. They were right, and their vision set the pattern for an entire industry. While still priced out of reach of most individuals, workstations were cheap for corporations and universities; networks of them (one to a user) rapidly replaced the older VAXes and other time-sharing systems
  64. Lazzareschi, Carla (January 31, 1988). "Sun Microsystems Is Blazing a Red-Hot Trail in Computers: $300-Million AT&T; Deal Moves Firm to Set Sights on IBM". Los Angeles Times. Archived from the original on July 21, 2022. Retrieved July 21, 2022.
  65. "About the GNU Project – Initial Announcement". Gnu.org. June 23, 2008. Archived from the original on March 5, 2009. Retrieved March 9, 2009.
  66. Christopher Tozzi (August 23, 2016). "Open Source History: Why Did Linux Succeed?". Archived from the original on August 17, 2017. Retrieved August 17, 2017.
  67. ^ "MINIX is now available under the BSD license". minix1.woodhull.com. April 9, 2000. Archived from the original on March 4, 2016.
  68. Moody, Glyn (August 1, 1997). "The Greatest OS That (N)ever Was". Wired. Archived from the original on July 25, 2022. Retrieved July 20, 2022.
  69. Torvalds, Linus. "What would you like to see most in minix?". Newsgroupcomp.os.minix. Usenet: 1991Aug25.205708.9541@klaava.Helsinki.FI. Archived from the original on May 9, 2013. Retrieved September 9, 2006.
  70. Torvalds, Linus; Diamond, David (2001). Just for Fun: The Story of an Accidental Revolutionary. New York City: HarperCollins. pp. 78–80. ISBN 0-06-662073-2.
  71. Linus Torvalds (October 14, 1992). "Chicken and egg: How was the first linux gcc binary created??". Newsgroupcomp.os.minix. Usenet: 1992Oct12.100843.26287@klaava.Helsinki.FI. Archived from the original on May 9, 2013. Retrieved August 17, 2013.
  72. Torvalds, Linus (January 5, 1992). "Release notes for Linux v0.12". Linux Kernel Archives. Archived from the original on August 19, 2007. Retrieved July 23, 2007. The Linux copyright will change: I've had a couple of requests to make it compatible with the GNU copyleft, removing the "you may not distribute it for money" condition. I agree. I propose that the copyright be changed so that it confirms to GNU ─ pending approval of the persons who have helped write code. I assume this is going to be no problem for anybody: If you have grievances ("I wrote that code assuming the copyright would stay the same") mail me. Otherwise, The GNU copyleft takes effect since the first of February. If you do not know the gist of the GNU copyright ─ read it.
  73. "Overview of the GNU System". Gnu.org. Archived from the original on February 28, 2009. Retrieved March 9, 2009.
  74. "Linus vs. Tanenbaum debate". Archived from the original on October 3, 2012. Retrieved February 19, 2014.
  75. ^ Torvalds, Linus and Diamond, David, Just for Fun: The Story of an Accidental Revolutionary, 2001, ISBN 0-06-662072-4
  76. Torvalds, Linus (March 1994). "Index of /pub/linux/kernel/SillySounds". Archived from the original on October 8, 2009. Retrieved August 3, 2009.
  77. Garfinkel, Simson; Spafford, Gene; Schwartz, Alan (2003). Practical UNIX and Internet Security. O'Reilly. p. 21.
  78. Santhanam, Anand; Vishal Kulkarni (March 1, 2002). "Linux system development on an embedded device". DeveloperWorks. IBM. Archived from the original on March 29, 2007. Retrieved July 26, 2007.
  79. Galli, Peter (August 8, 2007). "Vista Aiding Linux Desktop, Strategist Says". eWEEK. Ziff Davis Enterprise Inc. Archived from the original on July 9, 2009. Retrieved November 19, 2007.
  80. Paul, Ryan (September 3, 2007). "Linux market share set to surpass Win 98, OS X still ahead of Vista". Ars Technica. Ars Technica, LLC. Archived from the original on November 16, 2007. Retrieved November 19, 2007.
  81. Beer, Stan (January 23, 2007). "Vista to play second fiddle to XP until 2009: Gartner". iTWire. Archived from the original on December 3, 2008. Retrieved November 19, 2007.
  82. "Operating System Marketshare for Year 2007". Market Share. Net Applications. November 19, 2007. Archived from the original on June 24, 2013. Retrieved November 19, 2007.
  83. "Vista slowly continues its growth; Linux more aggressive than Mac OS during the summer". XiTiMonitor. AT Internet/XiTi.com. September 24, 2007. Archived from the original on December 14, 2007. Retrieved November 19, 2007.
  84. "Global Web Stats". W3Counter. Awio Web Services LLC. November 10, 2007. Archived from the original on June 28, 2012. Retrieved November 19, 2007.
  85. "June 2004 Zeitgeist". Google Press Center. Google Inc. August 12, 2004. Archived from the original on July 11, 2011. Retrieved November 19, 2007.
  86. McMillan, Robert (October 10, 2003). "IBM, Brazilian government launch Linux effort". www.infoworld.com. IDG News Service. Archived from the original on March 15, 2015. Retrieved February 16, 2015.
  87. "About Us - The Linux Foundation". Archived from the original on October 28, 2018. Retrieved October 1, 2018.
  88. "Staff and Board — Free Software Foundation — Working together for free software". Free Software Foundation. Archived from the original on November 21, 2023. Retrieved November 22, 2023.
  89. "Free software is a matter of liberty, not price — Free Software Foundation — working together for free software". Fsf.org. Archived from the original on July 14, 2012. Retrieved July 12, 2012.
  90. Email correspondence on the Linux Kernel development mailing list Linus Torvalds (November 30, 2001). "Re: Coding style, a non-issue". kernel.org. Archived from the original on August 12, 2021. Retrieved August 10, 2020.
  91. Raymond, Eric S. (2001). O'Reilly, Tim (ed.). The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary (Second ed.). O'Reilly & Associates. p. 16. ISBN 0-596-00108-8.
  92. "You have to design it you cannot asymptotically reach Security." Cantrill 2017
  93. The Cantrill Strikes Back | BSD Now 117. Jupiter Broadcasting. November 26, 2015. Archived from the original on December 14, 2020. Retrieved September 7, 2021 – via YouTube.
  94. "Why is Linux called a monolithic kernel?". stackoverflow.com. 2009. Archived from the original on October 17, 2013. Retrieved October 16, 2013.
  95. ^ "Anatomy of a Linux System" (PDF). O'Reilly. July 23–26, 2001. Archived (PDF) from the original on September 4, 2019. Retrieved October 10, 2018.
  96. "Wayland vs. Xorg: Will Wayland Replace Xorg?". CBT Nuggets. Retrieved December 26, 2024.
  97. "What's the deal with X11 and Wayland? - TUXEDO Computers". www.tuxedocomputers.com. Retrieved December 26, 2024.
  98. "Admin Guide README". Kernel.org git repositories.
  99. M. Tim Jones (May 31, 2006). "Inside the Linux boot process". IBM Developer Works. Archived from the original on October 17, 2013. Retrieved October 16, 2013.
  100. "What are the Different Types of Shells in Linux? | DigitalOcean". www.digitalocean.com. Retrieved November 17, 2024.
  101. "Understanding Linux Shells". Hivelocity Hosting. Retrieved November 17, 2024.
  102. Jake Edge (June 8, 2013). "The Wayland Situation: Facts About X vs. Wayland (Phoronix)". LWN.net. Archived from the original on October 22, 2013. Retrieved October 11, 2013.
  103. Miller, Matthew (May 6, 2022). "Announcing Fedora 36". Archived from the original on August 2, 2022. Retrieved October 28, 2022.
  104. Leiva-Gomez, Miguel (May 18, 2023). "What Is Wayland and What Does It Mean for Linux Users?". www.maketecheasier.com. Archived from the original on January 27, 2021. Retrieved June 18, 2024.
  105. "Linux TV: Television with Linux". linuxtv.org. Archived from the original on November 6, 2013. Retrieved October 16, 2013.
  106. Jonathan Corbet (October 11, 2006). "The Video4Linux2 API: an introduction". LWN.net. Archived from the original on October 7, 2013. Retrieved October 16, 2013.
  107. "Part I. Video for Linux Two API Specification". Chapter 7. Changes. linuxtv.org. Archived from the original on October 17, 2013. Retrieved October 16, 2013.
  108. Operating System Market Share (November 2009). "Operating System Market Share". Archived from the original on January 25, 2010. Retrieved December 11, 2009.
  109. "What is Copyleft? - GNU Project - Free Software Foundation". www.gnu.org. Archived from the original on October 6, 2015. Retrieved May 12, 2020.
  110. "POSIX.1 (FIPS 151-2) Certification". Archived from the original on February 26, 2012.
  111. "How source code compatible is Debian with other Unix systems?". Debian FAQ. the Debian project. Archived from the original on October 16, 2011.
  112. Eissfeldt, Heiko (August 1, 1996). "Certifying Linux". Linux Journal. Archived from the original on April 4, 2016.
  113. "The Debian GNU/Linux FAQ – Compatibility issues". Archived from the original on October 10, 2011. Retrieved September 17, 2011.
  114. comments, 26 Jul 2018 Steve OvensFeed 151up 9. "The evolution of package managers". Opensource.com. Archived from the original on July 26, 2018. Retrieved May 12, 2020.{{cite web}}: CS1 maint: numeric names: authors list (link)
  115. "Get Fedora". getfedora.org. Archived from the original on July 11, 2020. Retrieved February 24, 2020.
  116. design, Cynthia Sanchez: front-end and UI, Zvezdana Marjanovic: graphic. "The makers' choice for sysadmins, developers and desktop users". openSUSE. Archived from the original on August 5, 2005. Retrieved February 24, 2020.{{cite web}}: CS1 maint: multiple names: authors list (link)
  117. Inshanally, Philip (September 26, 2018). CompTIA Linux+ Certification Guide: A comprehensive guide to achieving LX0-103 and LX0-104 certifications with mock exams. Packt Publishing Ltd. p. 180. ISBN 978-1-78934-253-6.
  118. Barrett, Daniel J. (August 27, 2024). Linux kurz & gut: Die wichtigen Befehle (in German). O'Reilly. p. 61. ISBN 978-3-96010-868-9.
  119. Linux Format. "Linux Format DVD contents". Archived from the original on August 8, 2008. Retrieved January 17, 2008.
  120. linux-magazine.com. "Current Issue". Archived from the original on January 10, 2008. Retrieved January 17, 2008.
  121. ^ "State of Linux Kernel Development 2017". Linux Foundation. Archived from the original on November 14, 2021. Retrieved November 14, 2021.
  122. "From Freedom to Profit: Red Hat's Latest Move - An In-Depth Review of its Impact on Free Software and Open Source Values". Linux Careers. Retrieved November 16, 2024.
  123. Thompson, Ben (November 11, 2020). "Apple's Shifting Differentiation". Stratechery by Ben Thompson. Retrieved December 17, 2024.
  124. Equity, International Brand (May 28, 2024). "Apple Business Model Analysis". International Brand Equity (IBE). Retrieved December 17, 2024.
  125. "gfortran — the GNU Fortran compiler, part of GCC". GNU GCC. Archived from the original on April 18, 2020. Retrieved May 3, 2020.
  126. "GCC, the GNU Compiler Collection". www.gnu.org. Archived from the original on August 27, 2024. Retrieved December 17, 2024.
  127. "GCC vs. Clang/LLVM: An In-Depth Comparison of C/C++ Compilers".
  128. Das, Shakti (October 1, 2023). "Understanding Regular Expressions in Shell Scripting". Learn Scripting. Retrieved December 17, 2024.
  129. "Regular Expressions in Grep (Regex)". linuxize.com. March 11, 2020. Retrieved December 17, 2024.
  130. "Sculpting text with regex, grep, sed and awk". matt.might.net. Retrieved December 17, 2024.
  131. Brockmeier, Joe. "A survey of Linux Web development tools". Archived from the original on October 19, 2006. Retrieved December 16, 2006.
  132. Intel, Altus (September 25, 2024). "Elks 0.8 Released: Linux for 16-bit Intel CPUs". Altus Intel. Retrieved November 16, 2024.
  133. "UClinux". community.intel.com. June 26, 2019. Retrieved November 16, 2024.
  134. Das, Ankush (January 21, 2021). "Finally! Linux Runs Gracefully On Apple M1 Chip". It's FOSS News. Archived from the original on November 13, 2021. Retrieved November 13, 2021.
  135. Jimenez, Jorge (October 8, 2021). "Developers finally get Linux running on an Apple M1-powered Mac". PC Gamer. Archived from the original on January 11, 2023. Retrieved November 13, 2021.
  136. Proven, Liam (November 10, 2022). "OpenPrinting keeps old printers working, even on Windows". The Register. Archived from the original on January 7, 2023. Retrieved January 7, 2023.
  137. Bruce Byfield (August 14, 2007). "Is my hardware Linux-compatible? Find out here". Linux.com. Archived from the original on September 5, 2015. Retrieved September 4, 2015.
  138. "Linux Hardware". Linux Hardware Project. Archived from the original on January 26, 2021. Retrieved June 26, 2020.
  139. Wheeler, David A. "Why Open Source Software/Free Software (OSS/FS)? Look at the Numbers!". Archived from the original on April 5, 2006. Retrieved April 1, 2006.
  140. "Linux Operating System Market Size, Share and Forecast [2020-2027]". www.fortunebusinessinsights.com. Archived from the original on November 12, 2021. Retrieved November 12, 2021.
  141. "Linux Operating System Market Size, Share, Trends 2024-2032". www.expertmarketresearch.com. Archived from the original on February 3, 2023. Retrieved December 25, 2023.
  142. "The rise and rise of Linux". Computer Associates International. October 10, 2005. Archived from the original on February 17, 2007.
  143. Jeffrey S. Smith. "Why customers are flocking to Linux". IBM. Archived from the original on June 3, 2008.
  144. "W3Cook FAQ". W3Cook.com. Archived from the original on June 27, 2015. Retrieved June 30, 2015.
  145. "OS Market Share and Usage Trends". W3Cook.com. Archived from the original on August 6, 2015. Retrieved June 30, 2015.
  146. "Technologies Overview - methodology information". W3Techs. Retrieved June 30, 2015.
  147. "Linux vs. Windows usage statistics, November 2021". W3Techs. Archived from the original on March 30, 2022. Retrieved November 14, 2021.
  148. "Usage Statistics and Market Share of Unix for Websites, November 2021". W3Techs. Archived from the original on September 25, 2021. Retrieved November 14, 2021.
  149. "─ IDC Q1 2007 report". Linux-watch.com. May 29, 2007. Archived from the original on April 1, 2021. Retrieved March 9, 2009.
  150. "Server Operating System Market Size | Mordor Intelligence". www.mordorintelligence.com. Retrieved December 17, 2024.
  151. "Worldwide Server Market Summary and Outlook, 4Q23". IDC: The premier global market intelligence company. Retrieved December 17, 2024.
  152. Elad, Barry (February 3, 2024). "Linux Statistics 2024 By Market Share, Usage Data, Number Of Users and Facts". Enterprise Apps Today. Retrieved December 17, 2024.
  153. "Linux Statistics 2024". TrueList. Retrieved December 17, 2024.
  154. Elad, Barry (February 3, 2024). "Linux Statistics 2024 By Market Share, Usage Data, Number Of Users and Facts". Enterprise Apps Today. Retrieved December 17, 2024.
  155. "Linux Statistics 2024". TrueList. Retrieved December 17, 2024.
  156. "Usage Statistics and Market Share of Linux for Websites, December 2024". w3techs.com. Retrieved December 17, 2024.
  157. "Mobile Operating System Market Share Worldwide". StatCounter Global Stats. Archived from the original on October 11, 2020. Retrieved May 30, 2023.
  158. Egham (March 3, 2014). "Gartner Says Worldwide Tablet Sales Grew 68 Percent in 2013, With Android Capturing 62 Percent of the Market". Archived from the original on April 17, 2014. Retrieved June 13, 2014.
  159. "Mobile/Tablet Operating System Market Share". Netmarketshare.com. Archived from the original on June 28, 2021. Retrieved October 14, 2021.
  160. Strauss, Daryll. "Linux Helps Bring Titanic to Life". Archived from the original on January 12, 2012. Retrieved July 28, 2011.
  161. Rowe, Robin. "Linux and Star Trek". Archived from the original on July 12, 2011. Retrieved July 28, 2011.
  162. "Industry of Change: Linux Storms Hollywood". Archived from the original on April 11, 2009. Retrieved March 11, 2009.
  163. "Tux with Shades, Linux in Hollywood". Archived from the original on January 11, 2023. Retrieved March 11, 2009.
  164. "Weta Digital – Jobs". Archived from the original on December 30, 2010. Retrieved November 17, 2010.
  165. "LinuxMovies.org – Advancing Linux Motion Picture Technology". Archived from the original on March 1, 2012. Retrieved March 16, 2012.
  166. "LV: Minister: "Open standards improve efficiency and transparency"". Archived from the original on August 9, 2011. Retrieved February 21, 2009.
  167. "Linux Spreads its Wings in India". Archived from the original on July 28, 2011. Retrieved February 21, 2009.
  168. "Kerala shuts windows, schools to use only Linux". March 4, 2008. Archived from the original on May 15, 2011. Retrieved June 22, 2009.
  169. "China's Microprocessor Dilemma". Microprocessor Report. Archived from the original on September 18, 2009. Retrieved April 15, 2009.
  170. Krane, Jim (November 30, 2001). "Some countries are choosing Linux systems over Microsoft". Seattle Post-Intelligencer. Archived from the original on March 15, 2012. Retrieved February 21, 2009.
  171. "North Korea's 'paranoid' computer operating system revealed". The Guardian. December 27, 2015. Archived from the original on December 31, 2015. Retrieved December 31, 2015.
  172. "GNU General Public License, version 2". GNU Project. June 2, 1991. Archived from the original on December 7, 2013. Retrieved December 5, 2013.
  173. Torvalds, Linus (January 26, 2006). "Re: GPL V3 and Linux ─ Dead Copyright Holders". Linux Kernel Mailing List. Archived from the original on July 9, 2014.
  174. Torvalds, Linus (September 25, 2006). "Re: GPLv3 Position Statement". Linux Kernel Mailing List. Archived from the original on April 22, 2014.
  175. Brett Smith (July 29, 2013). "Neutralizing Laws That Prohibit Free Software — But Not Forbidding DRM". A Quick Guide to GPLv3. GNU Project. Archived from the original on December 1, 2013. Retrieved December 5, 2013.
  176. "Keeping an Eye on the Penguin". Linux-watch.com. February 7, 2006. Archived from the original on January 3, 2013. Retrieved November 9, 2010.
  177. ^ Wheeler, David A (July 29, 2002). "More Than a Gigabuck: Estimating GNU/Linux's Size". Archived from the original on April 21, 2006. Retrieved May 11, 2006.
  178. ^ Johnston, Louis; Williamson, Samuel H. (2023). "What Was the U.S. GDP Then?". MeasuringWorth. Retrieved November 30, 2023. United States Gross Domestic Product deflator figures follow the MeasuringWorth series.
  179. Amor, Juan José; et al. (June 17, 2007). "Measuring Etch: the size of Debian 4.0". Archived from the original on July 28, 2014. Retrieved September 16, 2007.
  180. Stahe, Sylviu (June 19, 2015). "There Is a Linux Detergent Out There and It's Trademarked". Softpedia. Archived from the original on June 22, 2015. Retrieved August 15, 2024.
  181. "Linux Timeline". Linux Journal. May 31, 2006. Archived from the original on February 3, 2013.
  182. Neil McAllister (September 5, 2005). "Linus gets tough on Linux trademark". InfoWorld. Archived from the original on April 12, 2008. Retrieved February 24, 2008.
  183. "Linux Mark Institute". Archived from the original on February 13, 2008. Retrieved February 24, 2008. LMI has restructured its sublicensing program. Our new sublicense agreement is: Free – approved sublicense holders pay no fees; Perpetual – sublicense terminates only in breach of the agreement or when your organization ceases to use its mark; Worldwide – one sublicense covers your use of the mark anywhere in the world
  184. Richard Stallman (April 28, 1996). "The FSF is no longer sponsoring Debian". tech-insider.org. Archived from the original on February 21, 2014. Retrieved February 8, 2014.
  185. "TiVo ─ GNU/Linux Source Code". Archived from the original on May 19, 2007. Retrieved December 12, 2006.
  186. "About Debian". debian.org. December 8, 2013. Archived from the original on January 23, 2014. Retrieved January 30, 2014.
  187. Andrew D. Balsa; et al. (October 17, 2009). "The linux-kernel mailing list FAQ". vger.kernel.org. Archived from the original on October 1, 2012. Retrieved June 13, 2013. ...we have tried to use the word "Linux" or the expression "Linux kernel" to designate the kernel, and GNU/Linux to designate the entire body of GNU/GPL'ed OS software,... ...many people forget that the linux kernel mailing list is a forum for discussion of kernel-related matters, not GNU/Linux in general...
  188. Côrte-Real, Pedro (May 31, 2011). "How much GNU is there in GNU/Linux?". Split Perspective. Archived from the original on February 7, 2014. Retrieved January 28, 2014. (self-published data)

External links

Linux
Linux kernel
Controversies
Distributions
Organizations
Adoption
Media
Professional related certifications
Contributors to the Linux operating system
Kernel
GNU
Distributions
Other developers
Advocates
Others
icon Linux portal
Linux distributions
Android
LineageOS
Other
Arch
Debian
Ubuntu
Other
Fedora
CentOS Stream
Other
Gentoo
Mandrake
Mandriva
Slackware
SUSE
Other
Discontinued
Android
Arch
Debian
Gentoo
Red Hat/Fedora
Slackware
SUSE
Other
Unix and Unix-like operating systems and compatibility layers
Operating
systems
BSD
Linux
System V
Other
Compatibility
layers
Free and open-source software
General
Software
packages
Community
Organisations
Licenses
Types and
standards
Challenges
Related
topics
Operating systems
General
Variants
Kernel
Architectures
Components
Process management
Concepts
Scheduling
algorithms
Memory management,
resource protection
Storage access,
file systems
Supporting concepts
Categories: