Misplaced Pages

Full body scanner

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Body scanner) Device which detects objects in or around a person's body

This article is about body scanners for security purposes. For other body scanning technologies, see 3D body scanning.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
Globe icon.The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (May 2012) (Learn how and when to remove this message)
This article may require cleanup to meet Misplaced Pages's quality standards. The specific problem is: Incoherently organized and redundant information in some sections. Please help improve this article if you can. (June 2023) (Learn how and when to remove this message)
(Learn how and when to remove this message)
Full body scanner in millimeter wave scanners technique at Cologne Bonn Airport
Image from an active millimeter wave body scanner
Image from an active millimeter wave body scanner

A full-body scanner is a device that detects objects on or inside a person's body for security screening purposes, without physically removing clothes or making physical contact. Unlike metal detectors, full-body scanners can detect non-metal objects, which became an increasing concern after various airliner bombing attempts in the 2000s. Some scanners can also detect swallowed items or items hidden in the body cavities of a person. Starting in 2007, full-body scanners started supplementing metal detectors at airports and train stations in many countries.

Three distinct technologies have been used in practice:

  • Millimeter wave scanners use non-ionizing electromagnetic radiation similar to that used by wireless data transmitters, in the extremely high frequency (EHF) radio band (which is a lower frequency than visible light). The health risks posed by these machines are still being studied, and the evidence is mixed, though millimeter wave scanners do not generate ionizing radiation.
  • X-ray-based scanners
    • Backscatter X-ray scanners use low dose radiation for detecting suspicious metallic and non-metallic objects hidden under clothing or in shoes and in the cavities of the human body. The dosage of radiation received is usually between 0.05 and 0.1 μSv Considerable debate regarding the safety of this method sparked investigations, ultimately leading multiple countries to ban the usage of them.
    • Transmission X-ray scanners use higher dosage penetrating radiation which passes through the human body and then is captured by a detector or array of detectors. This type of full body scanners allows to detect objects hidden not only under the clothes, but also inside the human body (for example, drugs carried by drug couriers in the stomach) or in natural cavities. The dosage received is usually not higher than 0.25 μSv and is mainly regulated by the American radiation safety standard for personal search systems using gamma or X-ray radiation
  • Infra-red thermal conductivity scanners do not use electromagnetic radiation to penetrate the body or clothing, but instead use slight temperature differences on the surface of clothing to detect the presence of foreign objects. Thermal conductivity relies on the ability of contraband hidden under clothing to heat or cool the surface of the clothing faster than the skin surface. Warm air is used to heat up the surface of the clothing. How fast the clothing cools is dependent, in part, on what is beneath it. Items that cool the clothing faster or slower than the surface of the skin will be identified by a thermal image of the clothing. These scanners are less often used compared to X-ray-based and mmWave-based scanners.

Passengers and advocates have objected to images of their naked bodies being displayed to screening agents or recorded by the government. Critics have called the imaging virtual strip searches without probable cause, and have suggested they are illegal and violate basic human rights. However, current technology is less intrusive and because of privacy issues most people are allowed to refuse this scan and opt for a traditional pat-down. Depending on the technology used, the operator may see an alternate-wavelength image of the person's naked body, merely a cartoon-like representation of the person with an indicator showing where any suspicious items were detected, or full X-ray image of the person. For privacy and security reasons, the display is generally not visible to other passengers, and in some cases is located in a separate room where the operator cannot see the face of the person being screened. Transmission X-ray scanners claim to be more privacy neutral as there is almost no way to distinguish a person but they also have a software able to hide privacy issues.

History

The first (ultra-low-dose backscatter X-ray) full body security scanner was developed by Dr. Steven W Smith, who developed the Secure 1000 whole body scanner in 1992. He subsequently sold the device and associated patents to Rapiscan Systems, who now manufacture and distribute the device.

Safety aspects of the Secure 1000 have been assessed in the US by the Food and Drug Administration, the National Council on Radiation Protection and Measurements and other independent sources since the early 1990s.

In 2000, Dr. Vladimir Linev patented a system for scanning a person based on transmission (penetrating) X-ray technology focused on the search for unwanted objects and contraband, which was later the base for CONPASS body scanner.

The first millimeter-wave full body scanner was developed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. The operation is one of the four national laboratories Battelle manages for the U.S. Department of Energy. In the 1990s, they patented their 3-D holographic-imagery technology, with research and development support provided by the TSA and the Federal Aviation Administration (FAA). In 2002, Silicon Valley startup SafeView, Inc. obtained an exclusive license to PNNL's (background) intellectual property, to commercialize their technology. From 2002 to 2006, SafeView developed a production-ready millimeter body scanner system, and software which included scanner control, algorithms for threat detection and object recognition, as well as techniques to conceal raw images in order to resolve privacy concerns. During this time, SafeView developed foreground IP through several patent applications. By 2006, SafeView's body scanning portals had been installed and trialed at various locations around the globe. They were installed at border crossings in Israel, international airports such as Mexico City and Amsterdam's Schiphol, ferry landings in Singapore, railway stations in the UK, government buildings like The Hague, and commercial buildings in Tokyo. They were also employed to secure soldiers and workers in Iraq's Green Zone. In 2006, SafeView was acquired by L-3 Communications. From 2006 and 2020, L-3 Communications (later L3Harris) continued to make incremental enhancements to their scanner systems, while deploying thousands of units worldwide. In 2020, Leidos acquired L3Harris, which included their body scanner business unit.

The first passive, non-radiating full body screening camera device was developed by Lockheed Martin through a sponsorship by the National Institute of Justice (NIJ)'s Office of Science and Technology and the United States Air Force Research Laboratory. Proof of concept was conducted in 1995 through the Defense Advanced Research Projects Agency (DARPA). Rights to this technology were subsequently acquired by Brijot Imaging Systems, who further matured a commercial-grade product line and now manufacture, market and support the passive millimeter wave camera devices.

Usage

This section needs to be updated. Please help update this article to reflect recent events or newly available information. (June 2013)
Video from the TSA explaining the procedure

Schiphol in the Netherlands was the first airport in the world to implement SafeView's millimeter-wave body scanner on a large scale after a test with flight personnel the previous year. On May 15, 2007, two of 17 purchased security scans were installed.

The Italian government had planned to install full-body scanners at all airport and train stations throughout the country, but announced in September 2010 plans to remove the scanners from airports, calling them "slow and ineffective".

The European Union currently allows member states to decide whether to implement full body scanners in their countries:

It is for each member state to decide to authorise the use of scanners in national airports. That will not change ... But where this scanning technology is used it should be covered by EU-wide standards on detection capability as well as common safeguards to ensure compliance with EU health and fundamental rights provisions.

— EU Transport Commissioner Siim Kallas

Australia

In Australia the government has decided a no opt-out policy will be enforced in relation to screening at airports. Persons with medical or physical conditions that prevent them from undertaking a body scan will be offered alternative screening methods suitable to their circumstances. Infants and young children under 140 cm will not be selected to undergo a body scan. Body-scanners are being used at eight of Australia's international airports – Adelaide, Brisbane, Cairns, Darwin, Gold Coast, Melbourne, Perth and Sydney. So far only passengers exiting via international flights are affected. Domestic and international passengers departing Newcastle Port Stephens airport have been subject to body scanning since October 2019. Passengers who refuse a scan may be banned from flying. The scanners proposed to be used in Australia have shown a high rate of error in testing. Public outrage over the nude images created by the body scanners being collected by policy resulted in a lawsuit in 2010 to stop body scanning.

Canada

In Canada, 24 airports currently have these scanners in use, using millimeter-wave technology. Transport Canada notes that "Passengers selected for a secondary search can choose between the full body scanner or a physical search."

United States

In the U.S. full-body scanners have been installed at train stations, subways, penitentiaries and airports.

After having previously used X-ray-based scanners the TSA currently uses Millimeter Wave AIT scanners exclusively, which show no identifying characteristics of the person being scanned. Instead, a generic outline of a person is used. As of December 2015, "While passengers may generally decline AIT screening in favor of physical screening, TSA may direct mandatory AIT screening for some passengers as warranted by security considerations in order to safeguard transportation security."

Regarding privacy concerns the Transportation Security Administration (TSA) has stated in 2010 that they " not, will not and the machines cannot store images of passengers at airports". However the TSA later disclosed, in a response to the house chair on homeland security, that its procurement of airport scanners requires manufacturers to include image storage and transmission features but that these features should be disabled before being placed in an airport. The TSA shows 45 individuals have the ability to turn these machines into 'test mode' which enables recording images, but states that they would never do this on a production system. The US Marshal Service did operate a backscatter machine in a courthouse that records images. However, in a statement, they noted that only individuals involved in a test were recorded. A sample of these images was received and disseminated by Gizmodo in 2010, using a Freedom Of Information Request. It is not clear if the US Marshal service has put these new scanning machines, that have recording capabilities, into production. The analyst is in a different room and is not supposed to be able to see the person being scanned by the Backscatter X-ray AIT, but is in contact with other officials who can halt the scanned person if anything suspicious shows up on the scan.

US Penitentiary is also constantly purchasing X-ray full-body scanners for contraband and weapons detection purposes. The scanners are generally Transmission X-ray scanners since these are the only devices capable of detecting metallic and non-metallic contraband hidden underneath clothing as well as contraband hidden inside body cavities.

United Kingdom

Civil rights groups in Britain in 2010 argued that the body scanning of children contravened the law relating to child pornography.

Passive infra-red scanners have been developed for use in public spaces to collect and analyze natural heat radiation given off by the human body to detect both metallic and non-metallic "threat objects". No external radiation source is used and privacy is preserved as no body details are revealed. Police are conducting a trial of the equipment at London rail stations.

Asia Pacific

During the forecast period of 2020–2025, the Asia–Pacific region is projected to grow at the highest market CAGR (Compound Annual Growth Rate). The growth of this region is possibly due to the high airport investments and improvements in prison systems. China and India are heavily investing in greenfield airport construction. In January 2020, the Indian government decided to equip 84 airports with full-body scanners, which has led the Indian market to grow at a higher rate.

Controversies

This article's "criticism" or "controversy" section may compromise the article's neutrality. Please help rewrite or integrate negative information to other sections through discussion on the talk page. (February 2015)

Privacy

Some argue that using a full-body scanner is equivalent to a strip search, and if used without probable cause violates basic human rights.

Full-body scanning allows screeners to see the surface of the skin under clothing. Prosthetics including breast prostheses and prosthetic testicles may require a potentially embarrassing physical inspection once detected. The scanners can also detect other medical equipment normally hidden, such as colostomy bags and catheters. The transgender community also has privacy concerns that body scanners could lead to their harassment.

In the UK, in 2010, the Equality and Human Rights Commission argued that full-body scanners were a risk to human rights and might be breaking the law.

In 2010 the National Human Rights Commission of Korea opposed the use of full-body scanners and recommended that they not be deployed at airports.

Opponents in the US argue that full body scanners and the new TSA patdowns are unconstitutional. A comprehensive student note came out in the Fall 2010 issue of the University of Denver Transportation Law Journal arguing that full-body scanners are unconstitutional in the United States because they are (1) too invasive and (2) not effective enough because the process is too inefficient.

On July 2, 2010, the Electronic Privacy Information Center (EPIC) filed a lawsuit to suspend the deployment of full-body scanners at airports in the United States:

EPIC argued that the federal agency has violated the Administrative Procedures Act, the Privacy Act, the Religious Freedom Restoration Act, and the Fourth Amendment. EPIC cited the invasive nature of the devices, the TSA's disregard of public opinion, and the impact on religious freedom.

— epic.org

EPIC claimed at that time that full-body scanners violated the Fourth Amendment to the United States Constitution because they subject citizens to a virtual strip search without any evidence of wrongdoing. In July 2011, the United States Court of Appeals for the District of Columbia Circuit ruled that the use of full body scanners at airport security does not violate the Fourth Amendment.

The American Civil Liberties Union, in 2006, called the machines an invasion of privacy: "This doesn't only concern genitals but body size, body shape and other things like evidence of mastectomies, colostomy appliances or catheter tubes. These are very personal things that people have every right to keep private and personal, aside from the modesty consideration of not wanting to be naked."

In the United States, in 2010 the TSA required that their full-body scanners "allow exporting of image data in real time", and cases of the government's storing of images have been confirmed.

Travelers at U.S. airports have complained that when they opted not to be scanned, they were subjected to a new type of invasive pat-down that one traveler in 2010 described as "probing and pushing ... in my genital area." Another traveler in the United States complained in 2010 that the TSA employee "inserted four fingers of both hands inside my trousers and ran his fingers all the way around my waist, his fingers extending at least 2–3 inches below my waistline."

In August 2010, it was reported that the United States Marshals Service saved thousands of images from a millimeter wave scanner. TSA – part of the Department of Homeland Security – reiterated that its own scanners do not save images and that the scanners do not have the capability to save images when they are installed in airports. However, these statements contradict the TSA's own Procurement Specs which specifically require that the machines have the ability to record and transmit images, even if those features might be initially turned off on delivery. Opponents have also expressed skepticism that if there were a successful terror attack that the machines could not save images for later inspection to find out what went wrong with the scans. On November 16, 2010, 100 of the stored 35,000 body scan images were leaked online and posted by Gizmodo.

In November 2010, a female traveler who opted out of a full body scan at Fort Lauderdale International Airport claimed that TSA agents handcuffed her to a chair and ripped up her plane ticket when she asked questions about the new type of invasive pat down she was about to receive. In response, the TSA posted parts of the security camera footage on their blog, though there is no sound in the video and the passenger is not directly in the camera during most of the incident.

In Idaho a bill was introduced in 2011 to prevent the use of full-body scanners as a primary screening method and allow people to request an alternative.

Wholebody imaging technology may not be used as the sole or primary method of screening persons, nor may it be used to screen any person unless another method of screening, such as metal detection, demonstrates cause for preventing such person from boarding an aircraft or entering a public facility or government building.

— Idaho House Bill no. 573

In February 2012 airport employees in Lagos were allegedly discovered wandering away from a cubicle located in a hidden corner on the right side of the screening area to where the 3D full-body scanner monitors are located. At the Dallas Ft. Worth International Airport, TSA complaints have been reported to disproportionally stem from women who felt that they were singled out for repeated screening for the entertainment of male security officers.

A ruling of the European Council in 2013 required that persons analyzing the image shall be in a separate location and the image shall not be linked to the screened person.

As of December 15, 2015 the TSA published a new policy which required AIT to be "mandatory" for "some" passengers for "security reasons". However, most individuals in the US can still opt out of the scanner and choose a pat-down if they are uncomfortable going through the scanner. Individuals also have the right to be patted down in a private room and have it witnessed by a person of the individual's choice.

Passive millimeter wave image and subject being screened

Treatment of minorities

This section needs to be updated. Please help update this article to reflect recent events or newly available information. (June 2023)

Current backscatter and millimeter wave scanners installed by the TSA are unable to screen adequately for security threats inside turbans, hijab, burqas, casts, prosthetics and loose clothing. This technology limitation of current scanners often requires these persons to undergo additional screening by hand or other methods and can cause additional delay or feelings of harassment.

According to a manufacturer of the machines, the next generation of backscatter scanners will be able to screen all types of clothing. These improved scanners have been designed to equalize the screening process for religious minorities.

Treatment of transgender people

Current machines installed by the TSA require agents in the US to designate each passenger as either male or female, after which the software compares the passenger's body against a normative body of that sex. Transgender passengers have reported that full body scanners at several U.S. airports have falsely raised alarms based on their anatomy.

Health concerns

Health concerns relating to the use of full-body scanning technology are present, especially pertaining to the use of X-ray scanners. The issue is mainly regulated by ANSI 43.17.2009, which limits the dose on a per-person basis. However this 2010-era document is intended to apply primarily in the context of standard civilian-airport security. It is generally not considered applicable to unusual terrorism-threat detection concerns in high-security environments (prisons, special-purpose airports) or military institutions. Nor is ANSI 43.17.2009 considered to be the appropriate standard for highly concealed threats such liquid bombs inside body cavities or swallowed drugs. Due to fundamental physical limitations of how each type of detection technology functions, these highly covert types of threats are impossible to detect by any means other than transmission X-rays.

From the perspective of annual dosage, the ANSI 43.17.2009 standard stipulates that a transmission X-ray dosage of 0.25 μSv per scan, in conjunction with an annual total limit at 250 μSv, equates to a per-person maximum of such 1000 scans per year for a civilian-aviation passenger. However, counting all medical X-ray procedures (as a typical person might undergo in an average year), and if the total annual dose of 250 μSv is taken to include all medical-related doses, then the number of flights/scans permitted for that person could be greatly reduced, assuming that transmission-type X-ray technology is used at each security screening that the civil-aviation passenger undergoes. But because the medical X-ray dosages vary tremendously (over several orders of magnitude) depending on the diagnostic procedures that the patient is subjected to, the proportional contribution of airport-security X-raying to the person's total annual dosage cannot be calculated unless an accounting of the medical X-ray dosages is also present.

Millimeter wave scanners

Main article: Millimeter wave scanner

Currently adopted millimeter wave scanners operate in the millimeter or sub-terahertz band, using non-ionizing radiation, and have no proven adverse health effects, though no long-term studies have been done. Thomas S. Tenforde, president of the National Council on Radiation Protection and Measurements, said in 2010 that millimeter wave scanners are probably within bounds , but there should be an effort to verify that they are safe for frequent use.

Backscatter X-ray scanners

This section may be too long to read and navigate comfortably. Consider splitting content into sub-articles, condensing it, or adding subheadings. Please discuss this issue on the article's talk page. (June 2023)

In the United States, the FAA Modernization and Reform Act of 2012 required that all full-body scanners operated in airports by the Transportation Security Administration use "Automated Target Recognition" software, which replaces the picture of a nude body with the cartoon-like representation. As a result of this law, all backscatter X-ray machines formerly in use by the Transportation Security Administration were removed from airports by May 2013, since the agency said the vendor (Rapiscan) did not meet their contractual deadline to implement the software.

Some backscatter technology produces an image that resembles a chalk etching, though other configurations produce much more detailed images, and there is still a possibility that the lower quality images can be easily switched to a higher resolution.

Several radiation safety authorities including the National Council on Radiation Protection and Measurements, The Health Physics Society, and the American College of Radiology, have stated that they are "not aware of any evidence" that full-body scans are unsafe. However, other radiation authorities, including the International Atomic Energy Agency and Nuclear Energy Agency recommend against using ionizing radiation on certain populations like pregnant women and children, and opponents of the devices say that no long-term studies have been done on the health effects of either backscatter X-ray or millimeter wave scanners:

Richard Morin, a medical physicist at the Mayo Clinic has said that he is not concerned about health effects from backscatter X-ray scanners:

Perhaps the most notable and debated professional opinion in regard to the safety of scanners is the so-called "Holdren Letter" from a number of world-renowned biochemists and biophysics researchers from the University of California to the Assistant to the US President for Science and Technology, Dr. John P. Holdren. The opening paragraph of their letter of concern reads: "We, a number of University of California, San Francisco faculty, are writing—see attached memo—to call your attention to our concerns about the potential serious health risks of the recently adopted whole body back scatter X-ray airport security scanners. This is an urgent situation as these X-ray scanners are rapidly being implemented as a primary screening step for all air travel passengers."

Critics of backscatter X-ray scanners, including the head of the Center for Radiological Research at Columbia University, say that the radiation emitted by some full-body scanners is as much as 20 times stronger than officially reported and is not safe to use on large numbers of persons because of an increased risk of cancer to children and at-risk populations. Researchers at the University of California, San Francisco, (UCSF) have argued that the amount of radiation is higher than claimed by the TSA and body scanner manufacturers because the doses were calculated as if distributed throughout the whole body, but the radiation from backscatter X-ray scanners is focused on just the skin and surrounding tissues:

However other professors in the UCSF radiology department disagree, saying that the radiation dose is low. "The conclusions are wrong", Ronald Arenson, professor of radiology, tells SF Weekly of his own institution's letter. "People who are totally unrelated to radiation wrote it. ... It was senior faculty at UCSF. They're smart people and well-intended, but their conclusions, I think, were off-base. They don't understand how radiation translates to an actual dose in the human body".

Dr. Steve Smith, inventor of the body scanner in 1991, and president of Tek84, one of the companies that produces the machines, has stated that the concerns of Dr. Brenner and UCSF Scientists regarding the skin dose of backscatter scanners are incorrect. He states the values used for X-ray penetration were incorrectly based on the description of the imaging depth which describes what the instrument sees and is a few mm into the skin and the dosage depth which is deeper. He describes experimental proof that the X-rays have the same properties as any other X-rays and the penetration is correct to be averaged over the whole body. Dr. Smith has provided measured data from an operating body scanner to explain his position.

In October 2010, The TSA responded to the concerns of UCSF researchers via the White House science advisor.

Scanners also concentrate the dose in time, because they deliver a high dose-rate at the moment of exposure. High dose-rate exposure has been shown to cause greater damage than the same radiation dose delivered at lower rates. This raises further questions about comparisons to background radiation.

The U.S. TSA has also made public various independent safety assessments of the Secure 1000 Backscatter X-ray Scanner.

Dr. Andrew J. Einstein, director of cardiac CT research at Columbia University, has made the following statements in support of the safety of body scanners: "A passenger would need to be scanned using a backscatter scanner, from both the front and the back, about 200,000 times to receive the amount of radiation equal to one typical CT scan ... Another way to look at this is that if you were scanned with a backscatter scanner every day of your life, you would still only receive a tenth of the dose of a typical CT scan ... By comparison, the amount of radiation from a backscatter scanner is equivalent to about 10 minutes of natural background radiation in the United States ... I believe that the general public has nothing to worry about in terms of the radiation from airline scanning ... For moms-to-be, no evidence supports an increased risk of miscarriage or fetal abnormalities from these scanners ... A pregnant woman will receive much more radiation from cosmic rays she is exposed to while flying than from passing through a scanner in the airport".

In May 2010 the National Council on Radiation Protection and Measurements issued a press release in response to the health risk claims from UCSF and Columbia University (claims of excessive skin dose and risks to large populations vs. individuals). The NCRP claims that cancer risks cited by opponents are completely inaccurate.

All the same the Inter-Agency Committee on Radiation Safety which includes the International Atomic Energy Agency, Nuclear Energy Agency and the World Health Organization, reported that, "Pregnant women and children should not be subject to scanning, even though the radiation dose from body scanners is 'extremely small'".

It has also been suggested that defects in the machines, damage from normal wear-and-tear, or software errors could focus an intense dose of radiation on just one spot of the body.

Proponents of backscatter X-ray scanners argue that the ANSI N43.17 standard addresses safety requirements and engineering design of the systems to prevent the occurrence of accidental high radiation due to defects and errors in hardware and software. Safety requirements include "fail-safe" controls, multiple overlapping interlocks and engineering design to ensure that failure of any systems result in safe or non-operation of the system to reduce the chance of accidental exposures. Furthermore, TSA requires that certification to the ANSI N43.17 standard is performed by a third party and not by the manufacturer themselves. But there are cases where types of medical scanning machines, operated by trained medical personnel, have malfunctioned, causing serious injury to patients that were scanned. Critics of full-body scanners cite these incidents as examples of how radiation-based scanning machines can overdose people with radiation despite all safety precautions.

In March 2011, it was found that some of the full body scanners in the US were emitting 10 times the normal level of radiation: Contractors charged with routinely examining the scanners submitted reports containing discrepancies, including mathematical miscalculations showing that some of the devices emitted radiation levels 10 times higher than normal:Peter Kant, executive vice president of Rapiscan Systems, said that "In our review of the surveys we found instances where a technician incorrectly did his math and came up with results that showed the radiation readings were off by a factor of 10".

The X-rays from backscatter scanners "are a form of ionizing radiation, that is, radiation powerful enough to strip molecules in the body of their electrons, creating charged particles that cause cell damage and are thought to be the mechanism through which radiation causes cancer." Humans are exposed to background radiation every day, anywhere on earth, and proponents of backscatter X-ray scanners say that the devices expose subjects to levels of radiation equivalent to background radiation. Furthermore, when traveling on an airplane, passengers are exposed to much higher levels of radiation than on earth due to altitude. Proponents say that a backscatter X-ray scan is equivalent to the radiation received during two minutes of flying.

The UK Health Protection Agency has also issued a statement that the radiation dose from backscatter scanners is very low and "about the same as one hour of background radiation".

The European Commission issued a report stating that backscatter X-ray scanners pose no known health risk, but suggested that backscatter X-ray scanners, which expose people to ionizing radiation, should not be used when millimeter-wave scanners that "have less effects on the human body" are available.

Assuming all other conditions equal, there is no reason to adopt X‐ray backscatters, which expose the subject to an additional – although negligible – source of ionizing radiations. Other WBI (Whole Body Imaging) technologies should be preferred for standard use. However, the European Commission's report provides no data substantiating the claim that "all other conditions are equal". One area where backscatter X-ray scanners can provide better performance than millimeter wave scanners, for example, is in the inspection of the shoes, groin and armpit regions of the body. The European Commission also recommended that alternate screening methods should be "used on pregnant women, babies, children and people with disabilities".

In the United States, Senator Susan Collins, Ranking Member of the Senate Homeland Security Committee sent a letter on August 6, 2010, to the Secretary of Homeland Security and Administrator of the TSA, requesting that the TSA "have the Department's Chief Medical Officer, working with independent experts, conduct a review of the health effects of their use for travelers, TSA employees, and airport and airline personnel." The TSA has completed this review.

The U.S. government is also supplying higher-radiation through-body X-ray machines to at least two African countries "for the purposes of airport security – the kind that can see through flesh, and which deliver real doses of radiation. The U.S.-supplied scanners have apparently been deployed at one airport in Ghana and four in Nigeria". This has caused some to question how far the U.S. government intends to go with the technology.

Unions for airline pilots working for American Airlines and US Airways have urged pilots to avoid the full body scanners.

Child scanning

There is controversy over full-body scanners in some countries because the machines create images of virtual strip searches on persons under the age of 18 which may violate child pornography laws. In the UK, the scanners may be breaking the Protection of Children Act of 1978 by creating images or pseudo-images of nude children.

Parents have complained that their young children are being virtually strip searched, sometimes without their parents present.

Ineffectiveness

Backscatter and millimeter

Some critics suggest that full-body scanner technology is ineffective for multiple reasons, including that they can easily be bypassed and a study published in the November 2010 edition of the Journal of Transportation Security suggested terrorists might fool the Rapiscan machines and others like it employing the X-ray "backscatter" technique. A terrorist, the report found, could tape a thin film of explosives of about 15–20 centimeters in diameter to the stomach and walk through the machine undetected.

Terrorists have already evolved their tactics with the use of surgically implanted bombs or bombs hidden in body cavities.

In March 2012, scientist and blogger Jonathan Corbett demonstrated the ineffectiveness of the machines by publishing a viral video showing how he was able to get a metal box through backscatter X-ray and millimeter wave scanners in two US airports. In April 2012, Corbett released a second video interviewing a TSA screener, who described firearms and simulated explosives passing through the scanners during internal testing and training. In another test of the full-body scanners, the machines failed to detect bomb parts hidden around a person's body. And in a different test in 2011, an undercover TSA agent was able to carry a handgun through full body scanners multiple times without the weapon being detected. However, in this case, the TSA agent who was in charge of viewing the scanned images was simply not paying attention.

Furthermore, an Israeli airport security expert, Rafi Sela, who helped design security at Ben Gurion International Airport, has said: "I don't know why everybody is running to buy these expensive and useless machines. I can overcome the body scanners with enough explosives to bring down a Boeing 747... That's why we haven't put them in our airport."

Again, despite the scanners, the TSA has been unable to stop weapons like box cutters and pistols from being carried onto airplanes.

The Australia government has been challenged over the effectiveness and cost of full body scanners by public media to which Australian Transport Minister Anthony Albanese has said he "makes no apologies" for mandating the installation of full body scanners at Australian airports.

Two alternatives that have been argued for by experts, such as Prof Chris Mayhew from Birmingham University, are chemical-based scanners and bomb-sniffing dogs. Others have argued that passenger profiling, as done by Israeli airport security, should replace full body scanners and patdowns.

Transmission (penetrating)

Artificial Intelligence software detecting objects on the human body X-ray image in transmission (penetrating) body scanner

Unlike the above, transmission technology allows to detect objects swallowed or hidden inside the objects. This is the main reason it is commonly used in prisons and jails. However the current technology does not allow the dual-energy body scanning (and detecting the object by its atomic number like it is used in baggage or vehicle X-ray scanners) which could give the image the same detection effectiveness as regular black and white X-ray. This leads to the idea that human-held detection (finding threats by looking at the image and finding non-common to the human body items) is the most effective way to find a contraband. However counting a human factor (fatigue, decreased attention) threats still could be missed. Modern software based on Artificial Intelligence in full body scanners is designed to minimize human faults and rise the detection effectiveness of this method.

US public opinion

A Gallup poll given just after the 2009 Christmas Day bombing attempt suggested that 78% of American airline travelers approved of body scanners while 20% disapproved. 51% indicated that they would have some level of discomfort with full-body scans, while 48% said they would not be uncomfortable with the idea. The poll was given in the context of the 2009 Christmas Day bombing attempt, and some opponents of full body scanners say that the explosives used in that bombing attempt would not have been detected by full-body scanners.

An ABC/Washington Post poll conducted by Langer Associates and released November 22, 2010, found that 64 percent of Americans favored the full-body X-ray scanners, but that 50 percent think the "enhanced" pat-downs go too far; 37 percent felt so strongly. In addition the poll states opposition is lowest amongst those who fly less than once a year.

As of November 23, 2010 an online poll of 11,817 people on The Consumerist website, 59.41% said they would not fly as a result of the new scans. Additionally, as of November 23, 2010, a poll of MSNBC 8,500 online readers indicated 84.1% believe the new procedures would not increase travel safety. According to a CBS telephone poll of 1,137 people published in November 2010, 81% (+/- 5%) percent of those polled approved TSA's use of full-body scans.

Full-body scanner lobbyists

Former Homeland Security secretary Michael Chertoff has been criticized for heavily promoting full-body scanners while not always fully disclosing that he is a lobbyist for one of the companies that makes the machines. Other full-body scanner lobbyists with government connections include:

  • former TSA deputy administrator Tom Blank
  • former assistant administrator for policy at the TSA, Chad Wolf
  • Kevin Patrick Kelly, "a former top staffer to Sen. Barbara Mikulski, D-Md., who sits on the Homeland Security Appropriations subcommittee"
  • Former Senator Al D'Amato

TSA's expansion of scanning program

Forbes magazine reported, in March 2011, that:

Newly uncovered documents show that as early as 2008, the Department of Homeland Security has been planning pilot programs to deploy mobile scanning units that can be set up at public events and in train stations, along with mobile x-ray vans capable of scanning pedestrians on city streets.

and that the TSA had research proposals to:

bring full-body scanners to train stations, mass transit, and public events. Contracts included in the EPIC release showed plans to develop long-range scans that could assess what a subject carried from 30 feet away, along with studies that involved systems for x-ray scanners mounted in vans and "covert" scans of pedestrians.

"No nudity" full-body scanner

Millimeter-wave scanner software transitioned to featureless male or female 'cartoons' in 2011, in response to widescale privacy concerns.

Currently, the millimeter-wave scanner monitor shows a generic cookie-cutter-like outline of a person and highlights potential threats. It is the same image no matter the individual's gender, height, or body type. The scanner software recognizes metallic and non-metallic items hiding under clothing. The machine then processes an image using yellow boxes to point out any areas that may need additional screening.

TSA Administrator John Pistole stated that "Our top priority is the safety of the traveling public, and TSA constantly strives to explore and implement new technologies that enhance security and strengthen privacy protections for the traveling public ... This software upgrade enables us to continue providing a high level of security through advanced imaging technology screening, while improving the passenger experience at checkpoints."

See also

References

  1. Harwood, Matthew (March 5, 2010). "Companies Seek Full-Body Scans That Ease Health, Privacy Concerns". Security Management. Archived from the original on October 6, 2014.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  2. "'AMAZING RESULTS' OF THE SCANNER THAT 'SEES EVERYTHING'". Moscow Domodedovo Airport. October 2, 2006. Archived from the original on March 3, 2016.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  3. ^ Health, Center for Devices and Radiological (June 20, 2019). "Products for Security Screening of People". FDA.
  4. Pickler, Nedra (March 10, 2011). "Group says body scanners an 'unreasonable search'". The Washington Post.
  5. "Steven W. Smith / Original Developer of Secure 1000 in 1992". Tek84.com. Archived from the original on September 8, 2010. Retrieved August 16, 2010.
  6. Hamilton, John (January 14, 2010) New Airport Body Scans Don't Detect All Weapons. National Public Radio
  7. J. L. McCrohan and K. R. Shelton Waters. Response to UCSF regarding their letter of concern , Oct. 2010. http://www.fda.gov/Radiation-EmittingProducts/ RadiationEmittingProductsandProcedures/ SecuritySystems/ucm231857.htm.
  8. Newpoff, Laura (August 2, 2004). "Battelle fund puts money in security system maker".
  9. "SafeView". March 2006.
  10. "L3 Communications buys SafeView". March 21, 2006.
  11. "L-3 Communications Acquires Two Leaders in Threat Detection for Military and Homeland Security Applications". March 29, 2006. Archived from the original on August 13, 2022. Retrieved June 4, 2022.
  12. "Leidos completes acquisition of L3Harris Technologies' Security Detection and Automation Businesses creating a comprehensive, global security and detection portfolio". May 4, 2020.
  13. "Brijot Acquires Rights to Lockheed Martin-Developed Technology for Design and Development of Concealed Weapons Detection Camera, Supporting Counter-Terrorism and Homeland Security Efforts". Business Wire. Orlando. August 20, 2002.
  14. "Italy to abandon airport body scanners". The Sydney Morning Herald. September 24, 2010.
  15. Member States must decide on airport body scanners: EC – EU business news. EUbusiness.com (June 16, 2010). Retrieved on September 26, 2010.
  16. Airport Body Scanners—Frequently Asked Questions. Australian Department of Infrastructure and Regional Development
  17. Body scanners. jetstar.com
  18. Ryan, Rosanna (February 6, 2012). "No opt-out rule for airport body scanners – ABC News (Australian Broadcasting Corporation)". ABC News. Abc.net.au. Retrieved December 19, 2016.
  19. "Security". www.newcastleairport.com.au. Archived from the original on December 24, 2019. Retrieved December 24, 2019.
  20. Puhanic, Andrew. Australia Becomes First to Ban Travelers Who Refuse Naked Body Scanners. theglobalistreport.com
  21. "Airport body scanner testing in Australia shows high error rate". news.com.au. October 26, 2011.
  22. Schneider, Kate (August 11, 2010). "Outrage as 'naked scans' stored by police". The Australian.
  23. "Do New Airport Body Scanners Violate Child Porn Laws? Brits Balking at US Security Demands". CBS News. Archived from the original on August 25, 2012.
  24. "INTERACTIVE MAP: Canadian airports with full body scanners – CityNews". Citynews.ca. January 14, 2015. Retrieved December 19, 2016.
  25. "Full body scanners at major Canadian airports". Transport Canada. March 24, 2017. Retrieved November 20, 2021.
  26. "'Now 'body scanners' could be deployed at US train stations, subways, other mass transits'". Sify. November 26, 2010. Archived from the original on April 1, 2011.
  27. Advanced Imaging Technology (AIT). tsa.gov
  28. AIT: How it Works. U.S. Transportation Security Administration
  29. ^ Vaughan, Jill (December 18, 2015) Privacy Impact Assessment: Update for TSA Advanced Imaging Technology. U.S. Department of Homeland Security
  30. "The TSA Blog: TSA Response to "Feds admit storing checkpoint body scan images"". Blog.tsa.gov. August 6, 2010. Retrieved December 19, 2016.
  31. Rossides, Gale D. (February 24, 2010) Letter to Bennie G. Thompson.
  32. ^ Rothman, Wilson (November 16, 2010). "Leaked U.S. Marshal body scan images revealed". NBC News.
  33. "Increasing Number of Jails, Prisons Using Full-body Digital Scanners | Prison Legal News". www.prisonlegalnews.org. Retrieved June 18, 2020.
  34. . U.S. Transportation Security Administration
  35. "Airport scanners 'could break child porn laws'". The Australian. January 5, 2010.
  36. "Scanners to screen London commuters for weapons". BBC News. September 16, 2019. Retrieved September 17, 2019.
  37. "New generation security body scanner unveiled by ThruVision Systems". www.ralspace.stfc.ac.uk. Science and Technology Facilities Council. Retrieved September 17, 2019.
  38. "Full-body scanners market in Asia Pacific is projected to grow at the highest CAGR from 2020 to 2025". M2PressWIRE. Retrieved October 11, 2020.
  39. "ACLU Backgrounder on Body Scanners and 'Virtual Strip Searches'", American Civil Liberties Union. Aclu.org (January 8, 2010). Retrieved on November 1, 2011.
  40. Whole Body Imaging Technology and Body Scanners ("Backscatter" X-ray and Millimeter Wave Screening). EPIC. Retrieved on November 1, 2011.
  41. Savage, David G. (January 13, 2010). "The fight against full-body scanners at airports". Los Angeles Times.
  42. "Pregnancy intimate piercings genitals – What can the naked scanner really see" Archived August 19, 2010, at the Wayback Machine, Bild (December 31, 2009). Retrieved on September 26, 2010.
  43. "Privacy Impact Assessment for TSA Whole Body Imaging" (PDF). Retrieved October 19, 2009.
  44. We Do NOT Have All the Same Body Parts and Body Scanners Violates Your Privacy | Airline Reporter | An airline blog on the airline industry. Airline Reporter (August 19, 2010). Retrieved on September 26, 2010.
  45. EHRC – Commission issues warning over counter-terrorism measures Archived August 9, 2010, at the Wayback Machine. Equalityhumanrights.com (February 16, 2010). Retrieved on September 26, 2010.
  46. Body scanners 'human rights risk' Archived January 19, 2010, at the Wayback Machine. Thisislondon.co.uk (January 17, 2010). Retrieved on September 26, 2010.
  47. "S.Korean human rights body opposes airport body scanners". The Independent. London. July 1, 2010. Archived from the original on July 3, 2010.
  48. "Why the TSA pat-downs and body scans are unconstitutional". The Washington Post. Retrieved November 30, 2010.
  49. Welch, Andrew (2010). "Full-Body Scanners: Full Protection from Terrorist Attacks or Full-On Violation of the Constitution?" (PDF). Transportation Law Journal. 37: 167–198.
  50. v. DHS (Suspension of Body Scanner Program) Archived March 2, 2013, at the Wayback Machine. EPIC. Retrieved on September 26, 2010.
  51. "Lawsuit challenges airport full-body scanners", The Boston Globe (August 4, 2010). Retrieved on September 26, 2010.
  52. Laing, Keith (July 16, 2011). "Court: TSA's full-body scanners do not violate the Constitution". The Hill.
  53. "Airport X-ray labelled strip search"', The Sydney Morning Herald (December 5, 2006). Retrieved on September 26, 2010.
  54. ^ Procurement specification for whole body imager devices for checkpoint operations, U.S. Department of Homeland Security
  55. McCullagh, Declan. (August 4, 2010) Feds admit storing checkpoint body scan images. News.cnet.com. Retrieved on September 26, 2010.
  56. TSA's Frisky New Pat-Downs. Mother Jones (August 24, 2010). Retrieved on September 26, 2010.
  57. Passengers shocked by new touchy-feely TSA screening. BostonHerald.com (August 24, 2010). Retrieved on September 26, 2010.
  58. Whitehead, John W. (October 25, 2010). "Michael Roberts: One Man Against the Surveillance State". The Rutherford Institute. Archived from the original on October 29, 2010. Retrieved November 30, 2010.
  59. Lundin, Leigh (August 15, 2010). "You show me yours and ..." Florida News. Orlando: Criminal Brief. Remember Homeland Security told the public the scanners aren't capable of storing images? Someone forgot to tell the scanner at the federal courthouse in Orlando ...
  60. 'Peep Show Database of American Travelers' – Video – FoxNews.com Archived October 9, 2011, at the Wayback Machine. Video.foxnews.com. Retrieved on September 26, 2010.
  61. The TSA Blog: TSA Response to "Feds admit storing checkpoint body scan images". Blog.tsa.gov (June 8, 2010). Retrieved on September 26, 2010.
  62. Munzenrieder, Kyle (November 10, 2010). "Meg McLain Tells of Horrifying Body Scanner Incident at Ft. Lauderdale Airport". Miami News. Retrieved November 30, 2010.
  63. The TSA Blog: Response to "Female radio host cuffed to chair, ticket ripped up...". Blog.tsa.gov (November 11, 2010). Retrieved on November 1, 2011.
  64. Legislature of the State of Idaho, House Bill No. 573 Archived June 20, 2010, at the Wayback Machine. (PDF) . Retrieved on November 1, 2011.
  65. Eze, Chinedu (September 21, 2010). "Now Showing at MMIA: Nude Images of Passengers". AllAfrica.com. Lagos. Retrieved November 30, 2010.
  66. Zetter, Kim (February 14, 2012). "Female Passengers Say They Were Targeted for TSA Body Scanners". Wired.
  67. Allen, Ginger (February 3, 2012). "Female Passengers Say They're Targeted By TSA « CBS Dallas / Fort Worth". Dfw.cbslocal.com. Retrieved December 19, 2016.
  68. Security body scans 'cute' mum three times in Dallas airport. NewsComAu (February 15, 2012)
  69. "EU Sets Rules for Full Body Scanners." Air Transport World 49.1 (2012): 18.
  70. Greenberg, Peter. "The Facts About TSA Body Scanners". AARP. Retrieved October 21, 2012.
  71. Orovic, Joseph. "Sikhs Cautioned Over 'Random' Air Searches". Queens Tribune. Archived from the original on April 2, 2011.
  72. "Sikh outrage at US airport security". Al Jazeera. August 26, 2007.
  73. TRAVEL ADVISORY: Know Your Rights if Asked to Undergo New TSA 'Enhanced Pat-Downs' Archived December 7, 2013, at the Wayback Machine. CAIR-Chicago. Retrieved on November 1, 2011.
  74. Tek84 Archived December 8, 2013, at the Wayback Machine. Tek84 (March 17, 2010). Retrieved on November 1, 2011.
  75. Dillon, Thoman (June 2015). "Airport body scanning: will the American public finally accept?". Journal of Transportation Security. 8 (1–2): 1–16. doi:10.1007/s12198-014-0151-5. S2CID 167530656. ProQuest 1679026667.
  76. "Transgender Passengers". Transportation Security Administration. November 23, 2015. Retrieved October 10, 2016.
  77. Rogers, Katie (September 22, 2015). "T.S.A. Defends Treatment of Transgender Air Traveler". The New York Times. Retrieved October 10, 2016.
  78. "Radiation Dose to Adults From Common Imaging Examinations" (PDF). American College of Radiology. Retrieved November 20, 2021.
  79. ^ Airport Full Body Scanners Pose No Health Threat: Experts Archived November 20, 2010, at the Wayback Machine . BusinessWeek (January 8, 2010). Retrieved on September 26, 2010.
  80. Hayes, John C. (January 8, 2010). "Whole-body airport scanners are basically safe—or are they?". Diagnosticimaging.com. Retrieved December 19, 2016.
  81. Kravets, David (January 18, 2013). "TSA Pulls Plug on Airport Nude Body Scanners".
  82. Rapiscan backscatter contract (World wide Web log), TSA, January 2013.
  83. TSA: How it Works Archived December 3, 2010, at the Wayback Machine. Tsa.gov. Retrieved on November 1, 2011.
  84. ACR Statement on Airport Full-body Scanners and Radiation. Acr.org. Retrieved on November 1, 2011. Archived June 28, 2010, at the Wayback Machine
  85. The TSA Blog: Advanced Imaging Technology: "Radiation Risk Tiny". Blog.tsa.gov. Retrieved on September 26, 2010.
  86. Tirone, Jonathan. (February 5, 2010) Airport Body Scanning Raises Radiation Exposure, Committee Says. Bloomberg. Retrieved on September 26, 2010.
  87. Experts call for more study into body scanners. The Globe and Mail (January 7, 2010). Retrieved on September 26, 2010.
  88. Letter from John W. Sedat et al. on the Dangers of TSA Backscatter Scanners. April 6, 2010
  89. Bloxham, Andy (June 29, 2010). "Airport body scanners 'could give you cancer'". London: The Telegraph.
  90. Tam, Pauline (January 22, 2010). "Some full-body scanners not without cancer risk: Experts". Canwest News Service. Archived from the original on November 15, 2010.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  91. Lindner, Bill (May 23, 2010). "Radiation from airport scanners may increase cancer risk". Digital Journal.
  92. ^ UCSF letter to Holdren concerning health risks of full body scanner TSA screenings 4-6-2010 Archived July 22, 2014, at the Wayback Machine. Scribd.com. Retrieved on September 26, 2010.
  93. Carmichael, Scott. (May 18, 2010) Scientists question safety of airport full body scanners. Gadling.com. Retrieved on September 26, 2010.
  94. The risk of 'low dose radiation is controversial'. Radiology.ucsf.edu (February 14, 2010). Retrieved on November 1, 2011.
  95. Smiley, Lauren (November 2010). "TSA Scanners: U.C. San Francisco Radiologists Debunk Radiation Fears". SFWeekly.
  96. re: Misinformation on airport body scanner radiation safety Archived July 16, 2011, at the Wayback Machine. A letter to Rush Holt. Tek84. December 2, 2010
  97. Response to University of California – San Francisco Regarding Their Letter of Concern, October 12, 2010. Fda.gov. Retrieved on November 1, 2011.
  98. Backscatter Back-Story | The White House. Whitehouse.gov (November 8, 2010). Retrieved on November 1, 2011.
  99. Gordonsteel, G; Down, J; Peacock, J; Stephens, T (1986). "Dose-rate effects and the repair of radiation damage". Radiotherapy and Oncology. 5 (4): 321–31. doi:10.1016/S0167-8140(86)80181-5. PMID 3726169.
  100. Memo Archived December 15, 2011, at the Wayback Machine. (PDF) . tsa.gov.
  101. Johns Hopkins Lab Full Report version 1 Archived February 5, 2011, at the Wayback Machine. (PDF) . Retrieved on November 1, 2011.
  102. Johns Hopkins Lab Full Report version 2 Archived April 19, 2011, at the Wayback Machine. (PDF) . Retrieved on November 1, 2011.
  103. Structural Shielding Design and Evaluation for Megavoltage Radiotherapy Facilities. (PDF) . Retrieved on September 26, 2010.
  104. Tirone, Jonathan (February 5, 2010). "Airport Body Scanning Raises Radiation Exposure, Committee Says". Bloomberg.
  105. ANSI N43.17 (2009) section 7.2.1 and 7.2.2
  106. ANSI N43.17 (2009) section 8.2.2 and 8.2.7
  107. Bogdanich, Walt (July 31, 2010). "After Stroke Scans, Patients Face Serious Health Risks". New York Times.
  108. Jay Stanley: Full Body Scanners: From Airports to the Streets?. Huffingtonpost.com (August 25, 2010). Retrieved on September 26, 2010.
  109. Marroquin, Art (March 14, 2011). "Full-body scanners to be retested". LA Daily News. Archived from the original on March 16, 2011. Retrieved March 21, 2011.
  110. Wilson, Simone (March 2011). "Forget Japan's Radiation Cloud – Could a TSA Scanner at LAX Give You Cancer?". LA Weekly. Archived from the original on March 21, 2011. Retrieved March 21, 2011.
  111. "Body scanners show high radiation levels". abc4. Archived from the original on April 3, 2011. Retrieved March 21, 2011.
  112. Wald, Matthew L. (January 9, 2010). "Cancer Risks Debated for Type of X-ray Scan". The New York Times.
  113. Calculate Your Radiation Dose | Radiation Protection. US EPA (June 28, 2006). Retrieved on September 26, 2010.
  114. TSA: Safety Archived July 9, 2010, at the Wayback Machine. Tsa.gov. Retrieved on September 26, 2010.
  115. Body scanning at airports Archived November 24, 2010, at the Wayback Machine. HPA. Retrieved on November 1, 2011.
  116. Microsoft Word – Ethics Of Body Scanner Policy Report Archived August 21, 2010, at the Wayback Machine. (PDF) Retrieved on September 26, 2010.
  117. Tek84 Archived May 6, 2014, at the Wayback Machine. Tek84 (March 17, 2010). Retrieved on September 26, 2010.
  118. Stoller, Gary. (July 13, 2010) Backlash grows against full-body scanners in airports. Travel.usatoday.com. Retrieved on September 26, 2010.
  119. United States Senate Committee on Homeland Security and Government Affairs : Press. Hsgac.senate.gov (August 6, 2010). Retrieved on September 26, 2010.
  120. "Minority Media | Homeland Security & Governmental Affairs Committee | Homeland Security & Governmental Affairs Committee". www.hsgac.senate.gov. Retrieved October 10, 2020.
  121. Chunovic, Louis (April 6, 2010). "Ghana adds Soter through-body X-ray security scanner". GSN. Archived from the original on July 15, 2010. Retrieved August 10, 2010.
  122. Stanley, Jay (April 8, 2010) "Is the U.S. Encouraging the Use of Radiation on Africans?". Aclu.org. Retrieved on November 1, 2011.
  123. Martín, Hugo (November 11, 2010). "Unions urge pilots to avoid body scanners at airports". Los Angeles Times.
  124. New scanners break child porn laws | Politics. The Guardian. Retrieved on September 26, 2010.
  125. Body Scanners Might Violate U.K. Child-Protection Laws | Threat Level. Wired.com. Retrieved on September 26, 2010.
  126. "Airport body scanners reveal all, but what about when it's your kid?" Archived August 8, 2010, at the Wayback Machine, St. Petersburg Times. Tampabay.com. Retrieved on September 26, 2010.
  127. Kravets, David (March 8, 2011). "Airport 'Nude' Body Scanners: Are They Effective?". Wired. Wired.com. Retrieved December 19, 2016.
  128. Heasley, Andrew (February 1, 2010). "Body scanners no match for latest terror ploy: surgically implanted bombs". Melbourne: The Age.
  129. Al Qaeda Bombers Learn from Drug Smugglers. CBS News (September 28, 2009). Retrieved on September 26, 2010.
  130. "$1B of TSA Nude Body Scanners Made Worthless By Blog – How Anyone Can Get Anything Past The Scanners". Tsaoutofourpants.wordpress.com. March 6, 2012. Retrieved December 19, 2016.
  131. Moscaritolo, Angela (March 7, 2012). "Blogger Says TSA's Full-Body Scanners Can be Easily Duped". Pcmag.com. Retrieved December 19, 2016.
  132. "TSA Admits $1B Nude Body Scanner Fleet Worthless!". Tsaoutofourpants.wordpress.com. April 10, 2012. Retrieved December 19, 2016.
  133. Schneier on Security: German TV on the Failure of Full-Body Scanners. Schneier.com. Retrieved on September 26, 2010.
  134. Stinchfield, Grant (February 21, 2011). "TSA Source: Armed Agent Slips Past DFW Body Scanner". NBC.
  135. Levi Julian, Hana (April 25, 2010) Israeli Security Expert to Canada: 'Full Body Scanners Useless'. israelnationalnews.com
  136. Wilkening, David (March 10, 2011). "TSA can't even find box-cutters". TravelMole. Archived from the original on March 13, 2011. Retrieved March 10, 2011.
  137. "Security a safe market". The Sydney Morning Herald.
  138. Full-body scanners spark concerns | News Archived February 29, 2012, at the Wayback Machine. The Engineer (January 5, 2010). Retrieved on September 26, 2010.
  139. Uliasz, Erik (November 26, 2010). "Airport Full Body Scanners Should Be Abandoned in Favor of Profiling". Philly2Philly. Archived from the original on December 7, 2010. Retrieved November 27, 2010.
  140. In U.S., Air Travelers Take Body Scans in Stride. Gallup.com. Retrieved on September 26, 2010.
  141. Are planned airport scanners just a scam? – Home News, UK. The Independent (January 3, 2010). Retrieved on September 26, 2010.
  142. Silver, Nate (November 22, 2010) New Poll Suggests Shift in Public Views on T.S.A. Procedures. New York Times.
  143. "You Might be in serious trouble for refusing to be screened". Consumerist.com. November 15, 2010. Retrieved November 22, 2010.
  144. "Do you support the TSA's Enhanced Security Procedures". MSNBC.com. Archived from the original on October 6, 2017. Retrieved November 22, 2010.
  145. "CBS News Poll: 11/15/10". CBS News. November 15, 2010.
  146. Ex-Homeland Security chief head said to abuse public trust by touting body scanners. washingtonpost.com (December 31, 2009). Retrieved on September 26, 2010.
  147. Ridgeway, James (January 2010). "The Airport Scanner Scam". Mother Jones.
  148. The TSA and the full-body-scanner lobby. Washington Examiner (December 29, 2009). Retrieved on September 26, 2010.
  149. Greenberg, Andy (March 2, 2011). "Documents Reveal TSA Research Proposal To Body-Scan Pedestrians, Train Passengers". Forbes.
  150. Greenberg, Andy (March 9, 2011). "TSA Never Tested Full-Body Scans For Mass Transit, Except When It Did". Forbes.
  151. Halsey, Ashley. "New airport software to end naked scanner images". Seattletimes.com. Retrieved December 19, 2016.
  152. DiNuzzo, Emily (July 20, 2021). "Here's What Airport Body Scanners Really See".
  153. Hachman, Mark. "No more 'naked' full body airport scans after TSA upgrade". PCMAG. Retrieved April 14, 2012.

External links

Categories: