Misplaced Pages

Borosulfate

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With there is no condensation, each ion stands alone. In the anions are linked into a chain, a chain of loops, or as in a cycle. Finally in the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5 in 2012 by the research group of Henning Höppe, although the compound class as such had been postulated already in 1962 by G. Schott and H. U. Kibbel. Over 80 unique compounds are known as of 2024.

They are distinct from the borate sulfates which have separate, uncondensed sulfate and borate ions.

Related compounds include boroselenates, borotellurates, and also boroantimonates, borogallates, borogermanates, borophosphates, boroselenites and borosilicates.

Formation

Borosulfates are formed by heating boric oxide, oleum, or sulfuric acid, with metal carbonates. The degree of condensation is varied with the ratio of oleum to sulfuric acid. Pure oleum is more likely to yield compounds with disulfate groups.

Reactions

When heated to around 500 °C the borosulfates decompose by emitting SO3 vapour and form a metal sulfate and boric oxide.

List

chem mw crystal system space group unit cell Å volume density comment references
boron sulfate B2S2O9 229.74 monoclinic C2 a=7.7600 b=4.1664 c=8.6134 β=94.785 Z=2 277.51 2.749 no cations; 3D mesh
H monoclinic P21/c a=15.6974, b=11.436, c=8.5557; β=90.334°; Z=8 superacid
H3O P4/ncc a=9.1377, c=7.3423; Z=4
H monoclinic P21/c a=15.697 b=11.4362 c=8.5557 β=90.334
Li Pc a = 7.635, b = 9.342, c = 8.432, and β = 92.55° 3D network, like tectosilicate
Li orthorhombic P212121 a = 10.862, b = 10.877, c = 17.769
Li5 orthorhombic P21/c a=8.0191 b=10.2111 c=15.0401
Be monoclinic C2/c a= 23.856, b= 7.3507, c= 12.3235, β= 98.724(2)°, Z=8 2136.1 2.58 colourless
NH4 P4/ncc a=9.1980 c=7.2458 decompose 320 °C, proton conductor
NH4 monoclinic Cc a=11.4403 b=14.9439 c=13.8693 β=93.662
(NH4)2B4SO10 271.38 monoclinic C2 a=11.3685 b=6.5541 c=12.8328 β=106.247 4 918.0 1.964 SHG 1.1 × KDP; min PM wavelength 252 nm; decompose 300 °C
3 343.12 orthorhombic Ibca a=7.2858 b=14.7048 c=22.7052 Z=8 2433.2 1.928 decompose 320 °C chains
Na monoclinic P2/c a=5.434 b=7.570 c=7.766 β=99.74
Na monoclinic P21/c a=10.949, b=8.49, c=12.701; β=110.227°; Z=4
Na2B6SO13 orthorhombic Pbca a=11.6569 b=9.4094 c=17.4833 Z=8 1917.6 2.431 birefringence Δn = 0.07 @ 589.3 nm
Na5-I orthorhombic Pca21 a = 10.730, b = 13.891, c = 18.197
Na5-II orthorhombic P212121 a = 8.624, b = 9.275, c = 16.671
α-Mg4 711.22 trigonal P3 a=8.0165 c=7.4858 Z=1 416.62 2.835 colourless
β-Mg4 711.22 hexagonal P3 a = 13.9196, c = 7.4854, Z = 3 1253 2.821 colourless
Mg 430.17 monoclinic C2/c a = 17.443, b = 5.3145, c = 14.2906 β = 126.323° Z = 4 1067.3 2.677 phyllosilicate structure colourless decompose 550 °C
β-Mg monoclinic P21/n a=7.9100 b=8.0815 c=9.0376 β=111.37° Z=2 269.01 2.667 colourless decompose 550 °C
Mg3((H2O)B(SO4)3)2 706.94 triclinic P1 a=7.9609 b=7.9671 c=9.2343 α=64.959° β=89.228° γ=60.054° 444.96 2.638 200K
Mg3((H2O)B(SO4)3)2 706.94 R3 a=7.9620 c=24.4231 Z=3 1340.84 2.627 room temperature
K P4/ncc a=8.9739 c=7.4114
K monoclinic Cc a=11.3368, b=14.66, c=13.6650; β=94.235°; Z=8
K2B4SO10 313.50 monoclinic C2 a=11.2631 b=6.4339 c=12.649 β=105.707° Z=4 882.4 2.360 colourless
pentapotassium borosulfate K5 P41 a=9.9023 c=16.1871 1687.2 2.471 first discovered
K3 orthorhombic Ibca a = 7.074, b = 14.266, c = 22.58
K4 monoclinic I2/a a=14.524 b=7.3916 c=15.7857 β=115.50
CaB2S4O16 monoclinic P21/c a=5.5188 b=15.1288 c=13.2660 β=92.88 sheet
Mn monoclinic P21/n a = 8.0435, b = 7.9174, c = 9.3082, β = 110.94° Z=2 553.63 colourless
α-Mn4 833.74 trigonal P3 a=8.1086 c=7.7509 Z=1 441.3 3.137 colourless
β-Mn4 833.74 trigonal P3 a=13.9196 c=7.4854
α-Co monoclinic C2/c a=17.4254 b=5.3397 c=14.3214 β=126.03° Z=4 269.40 2.860 pink
β-Co monoclinic P21/n a=7.8892 b=8.1042 c= 9.0409 β=111.29° Z=2 269.29 2.803 pink
α-Co4 849.70 trigonal P3 a=7.991 c=7.669 Z=1 418.0 3.376 pink
α-Ni4 848.82 trigonal P3 a=7.9359 c=7.4398 Z=1 405.77 3.474 yellow
Cu triclinic P1 a=5.3096 b=7.0752 c=11.1977 α=81.154 β=80.302 γ=80.897 cyclic
Cu triclinic P1 a=5.2470 b=7.1371 c=7.9222 α=73.814 β=70.692 γ=86.642 chain
Zn monoclinic P21/n a = 8.0435, b = 7.9174, c = 9.3082, β = 111.26° Z=2 534.36 colourless
α-Zn4 875.46 trigonal P3 a=7.9971 c=7.4895 Z=1 414.81 3.505 colourless
Rb2B4SO10 406.24 monoclinic C2 a=11.3127 b=6.5152 c=12.971 β=105.411° Z=4 921.6 2.928 colourless
Rb3 orthorhombic Ibca a = 7.2759, b = 14.794, c = 22.637
Rb4 orthorhombic Pnma a=8.0415 b=10.647 c=20.425
Rb5 tetragonal P43212 a=10.148 c=16.689 Z=4 band gap 3.99 eV
Rb3HB4S2O14 P63/m a = 6.502, c = 19.02 Z=2
LiRb4 743.8 monoclinic P21 a=7.5551, c=14.560, c=7.5517 β=90.2372 Z=2 transparent
LiRb4 743.8 tetragonal I4 a=7.6128, c=14.631, Z=2 at 500K
Sr 493.48 orthorhombic Pnma a=12.574 b=12.421 c=7.319 Z=4 1143.1 2.867 decompose 400 °C
Sr 573.54 monoclinic P21/n a = 7.470, b = 15.334, c = 12.220, β = 93.29° Z=4 1397.5 2.726
Sr orthorhombic Pnma a=1657.3 b=12.037 c=4.39484
Sr 617.36 monoclinic P21/c a = 11.3309, b= 7.1482, c = 19.355, β = 106.878°, Z = 4 1500.1 2.73 colourless; Sr in 9 coordination by sulfate oxygens
Y2 monoclinic C2/c a=13.5172 b=11.3941 c=10.8994 β=93.447 cyclic
Ag P4/ncc a=8.6679 c=7.2897
Ag monoclinic P21/c a = 9.507, b = 9.601, c = 11.730, β = 98.35° Z=4 1059.3 2.953 colourless
Cd
Cd 438.20 orthorhombic Pnma a=8.9692 b=11.520 c=8.7275 Z=4 901.8 3.23 colourless
Cd4 trigonal P3 a=8.2222 c=7.9788 Z=1 467.14 3.78 colourless
(I4)2 triclinic P1 a = 11.3714 b = 11.5509 c = 12.7811 α = 68.638° β = 68.275° γ = 64.626° Z=2 1366.16 2.999 orange-brown
Cs2B4SO10 501.12 monoclinic C2 a=11.4012 b=6.5997 c=13.5702 β=103.934° Z=4 919.04 3.359 colourless
Cs2 monoclinic P2/c a=14.765 b=6.710 c=12.528 β=104.50
Cs3HB4S2O14 P63/m a = 6.5648, c = 19.5669 Z=2
Cs monoclinic P21/c a=10.4525, b=11.319, c=8.2760; β=103.206; Z=4
Cs3Li2 monoclinic P21/n a=13.7698 c=8.2376 c=13.9066 β=91.778
Cs3Na2 monoclinic P21/c a=13.6406 b=7.9475 c=13.9573 β=990.781
CsK4 P43212 a=9.9433 c=16.881
Ba orthorhombic Pnna a = 12.791, b = 12.800, c = 7.317 Z = 4
Ba orthorhombic Pnma a=17.1848 b=12.3805 c=4.4226
Ba2 monoclinic I2/a a = 11.6077, b = 8.9144, c = 21.303, β = 104.034° Z = 4 chains
La2 monoclinic C2/c a=1379.2 b=1158.9 c=1139.5 β=93.611 cyclic
Ce2 monoclinic C2/c 13.740 b=11.5371 c=11.3057 β=93.661 cyclic
Pr2 monoclinic C2/c a=13.711 b=11.5305 c=11.2643 β=93.668 cyclic
Nd2 monoclinic C2/c a=13.6775 b=11.51.34 11.2046 β=93.5909 cyclic
Sm2 monoclinic C2/c a=13.633 b=11.492 c=11.112 β=93.567 cyclic
Eu2 monoclinic C2/c a=13.602 b=11.470 c=11.050 β=93.465 cyclic
Gd2 monoclinic C2/c a=13.5697 b=11.4426 c=11.0271 β= cyclic
Tb2 monoclinic C2/c a=13.5601 b=11.42.48 c=10.9881 β=93.534 cyclic
Dy2 monoclinic C2/c a=13.568 b=11.425 c=10.9703 β=93.540 cyclic
Ho2 monoclinic C2/c a=13.505 b=11.409 c=10.921 β=93.453 cyclic
Er2 monoclinic C2/c a=13.551 b=11.411 c=10.882 β=93.41 cyclic
Tm2 monoclinic C2/c a=13.4981 b=11.3617 10.8327 β=93.4500 cyclic
Yb2 monoclinic C2/c a=13.495 b=11.3452 c=10.7961 β=93.390 cyclic
Lu2 monoclinic C2/c a=13.469 b=11.364 c=10.799 β=93.369 cyclic
Pb 613.05 orthorhombic Pnna a=12.516 b=12.521 c=7.302 Z=4 114.43 3.558 loop chain
Pb orthorhombic P21/m a=4.4000 b=12.1019 c=8.6043
Bi2 659.08 orthorhombic C2/c a = 13.568, b = 11.490, c = 11.106 Z=4 1728.8 3.894
(H3O)Bi4 1039.72 I4 a=11.857, c=8.149 Z=2 1156.84 2.99 colourless; non-linear optical
(UO2) 569.52 triclinic P1 a=5.448 b=7.021 c=13.522 α =92.248° β =95.347° γ =101.987° Z=2 3.762 green
(UO2)2 1058.23 monoclinic P21/n a=10.872 b=11.383 c=14.812 β=92.481 Z=4 3.838 yellow

References

  1. ^ Höppe, Henning A.; Kazmierczak, Karolina; Daub, Michael; Förg, Katharina; Fuchs, Franziska; Hillebrecht, Harald (2012-06-18). "The First Borosulfate K5[B(SO4)4]". Angewandte Chemie International Edition. 51 (25): 6255–6257. doi:10.1002/anie.201109237. PMID 22566359.
  2. ^ Netzsch, Philip; Höppe, Henning A. (2020-09-30). "Synthesis and Characterization of the Chain Borosulfates (NH 4 ) 3 [B(SO 4 ) 3 ] and Sr[B 2 (SO 4 ) 4 ]". Zeitschrift für anorganische und allgemeine Chemie. 646 (18): 1563–1569. doi:10.1002/zaac.202000105. ISSN 0044-2313.
  3. Schott, G.; Kibbel, H. U. "Über Sulfatoborate". Zeitschrift für anorganische und allgemeine Chemie. 314 (1–2): 104–112. doi:10.1002/zaac.19623140113. ISSN 0044-2313.
  4. ^ Bruns, Jörn; Höppe, Henning A.; Daub, Michael; Hillebrecht, Harald; Huppertz, Hubert (2020-06-26). "Borosulfates—Synthesis and Structural Chemistry of Silicate Analogue Compounds". Chemistry – A European Journal. 26 (36): 7966–7980. doi:10.1002/chem.201905449. ISSN 0947-6539. PMC 7384169. PMID 31943390.
  5. Kong, Fang; Ma, Yunxiang; Mao, Jianggao (January 2018). "Lanthanide Inorganic Solids Based on Main Group Borates and Oxyanions of Lone Pair Cations: Lanthanide Inorganic Solids Based on Main Group Borates and Oxyanions of Lone Pair Cations". Chinese Journal of Chemistry. 36 (1): 63–72. doi:10.1002/cjoc.201700597.
  6. ^ Netzsch, Philip; Gross, Peter; Takahashi, Hirotaka; Höppe, Henning A. (2018-07-16). "Synthesis and Characterization of the First Borosulfates of Magnesium, Manganese, Cobalt, Nickel, and Zinc". Inorganic Chemistry. 57 (14): 8530–8539. doi:10.1021/acs.inorgchem.8b01234. ISSN 0020-1669. PMID 29957944.
  7. Logemann, Christian; Wickleder, Mathias S. (2013-12-23). "B 2 S 2 O 9 : A Boron Sulfate with Phyllosilicate Topology". Angewandte Chemie International Edition. 52 (52): 14229–14232. doi:10.1002/anie.201307056. PMID 24214383.
  8. ^ Netzsch, Philip; Höppe, Henning A. (2020-11-26). "Sr[B 2 (SO 4 ) 3 (S 2 O 7 )]: A Borosulfate with an Unprecedented Chain Structure Comprising Disulfate Groups". Inorganic Chemistry. 59 (24): 18102–18108. doi:10.1021/acs.inorgchem.0c02560. ISSN 0020-1669. PMID 33241934. S2CID 227175679.
  9. ^ Daub, Michael; Kazmierczak, Karolina; Höppe, Henning A.; Hillebrecht, Harald (2013). "The Borosulfate Story Goes on—From Alkali and Oxonium Salts to Polyacids". Chemistry – A European Journal. 19 (50): 16954–16962. doi:10.1002/chem.201303012. ISSN 1521-3765. PMID 24203813.
  10. ^ Daub, Michael; Kazmierczak, Karolina; Gross, Peter; Höppe, Henning; Hillebrecht, Harald (2013-05-20). "Exploring a New Structure Family: Alkali Borosulfates Na 5 [B(SO 4 ) 4 ], A 3 [B(SO 4 ) 3 ] (A = K, Rb), Li[B(SO 4 ) 2 ], and Li[B(S 2 O 7 ) 2 ]". Inorganic Chemistry. 52 (10): 6011–6020. doi:10.1021/ic400267s. ISSN 0020-1669. PMID 23656591.
  11. Sutorius, Stefan; Hanrath, Michael; Bruns, Jörn (2022-02-09). "Be[B2(SO4)4] – A Borosulfate exhibiting Ino- and Phyllosilicate Analogue Topology". European Journal of Inorganic Chemistry. 2022 (11): ejic.202200009. doi:10.1002/ejic.202200009. ISSN 1434-1948. S2CID 246719711.
  12. Ward, Matthew D.; Chaloux, Brian L.; Johannes, Michelle D.; Epshteyn, Albert (October 2020). "Facile Proton Transport in Ammonium Borosulfate—An Unhumidified Solid Acid Polyelectrolyte for Intermediate Temperatures". Advanced Materials. 32 (42): 2003667. Bibcode:2020AdM....3203667W. doi:10.1002/adma.202003667. ISSN 0935-9648. PMID 32924200. S2CID 221672277.
  13. Li, Zijian; Jin, Wenqi; Zhang, Fangfang; Chen, Zilong; Yang, Zhihua; Pan, Shilie (2021-10-09). "Achieving Short-Wavelength Phase-Matching Second Harmonic Generation in Boron-Rich Borosulfate with Planar [BO3] Units". Angewandte Chemie International Edition. 61 (4): anie.202112844. doi:10.1002/anie.202112844. ISSN 1433-7851. PMID 34626043. S2CID 238528455.
  14. ^ Hämmer, Matthias; Bayarjargal, Lkhamsuren; Höppe, Henning A. (2020-11-12). "The First Bismuth Borosulfates Comprising Oxonium and a Tectosilicate-Analogous Anion". Angewandte Chemie International Edition. 60 (3): 1503–1506. doi:10.1002/anie.202011786. ISSN 1433-7851. PMC 7839778. PMID 33026134.Open access icon
  15. ^ Fan, Jinbin; Yan, Ziting; Chen, Zilong; Li, Huimin; Yang, Zhihua; Zhang, Fangfang; Pan, Shilie (2024-08-19). "Na2B6SO13 with unprecedented [B6SO13]∞ double chains and largest birefringence among borosulfates induced by the uniform arrangement of [B3O7] units". Science China Chemistry. doi:10.1007/s11426-024-2170-6. ISSN 1674-7291.
  16. ^ Netzsch, Philip; Pielnhofer, Florian; Glaum, Robert; Höppe, Henning A. (2020-11-17). "Synthesis-Controlled Polymorphism and Optical Properties of Phyllosilicate-Analogous Borosulfates M [B 2 (SO 4 ) 4 ] ( M =Mg, Co)". Chemistry – A European Journal. 26 (64): 14745–14753. doi:10.1002/chem.202003214. ISSN 0947-6539. PMC 7756226. PMID 32744744.
  17. ^ Li, Zijian; Jin, Wenqi; Zhang, Fangfang; Yang, Zhihua; Pan, Shilie (2022-11-23). "Exploring Short-Wavelength Phase-Matching Nonlinear Optical Crystals by Employing KBe 2 BO 3 F 2 as the Template". ACS Central Science. 8 (11): 1557–1564. doi:10.1021/acscentsci.2c00832. ISSN 2374-7943. PMC 9686211. PMID 36439311.
  18. ^ Pasqualini, Leonard C.; Huppertz, Hubert; Bruns, Jörn (2019-12-17). "M[B2(SO4)4] (M = Mn, Zn)—Syntheses and Crystal Structures of Two New Phyllosilicate Analogue Borosulfates". Inorganics. 7 (12): 145. doi:10.3390/inorganics7120145. ISSN 2304-6740.
  19. Dong, Lingyun; Pan, Shilie; Wang, Ying; Yu, Hongwei; Lin, Xiaoxia; Han, Shujuan (March 2015). "Synthesis and structural characterization of a new rubidium borosulfate, Rb5BS4O16". Materials Research Bulletin. 63: 93–98. doi:10.1016/j.materresbull.2014.11.047.
  20. ^ Daub, Michael; Hillebrecht, Harald (September 2015). "Borosulfates Cs 2 B 2 S 3 O 13 , Rb 4 B 2 S 4 O 17 , and A 3 HB 4 S 2 O 14 ( A = Rb, Cs) – Crystalline Approximants for Vitreous B 2 O 3 ?". European Journal of Inorganic Chemistry. 2015 (25): 4176–4181. doi:10.1002/ejic.201500603. ISSN 1434-1948.
  21. ^ Li, Yanqiang; Zhou, Zhengyang; Zhao, Sangen; Liang, Fei; Ding, Qingran; Sun, Junliang; Lin, Zheshuai; Hong, Maochun; Luo, Junhua (2021-03-08). "A Deep-UV Nonlinear Optical Borosulfate with Incommensurate Modulations". Angewandte Chemie International Edition. 60 (20): 11457–11463. doi:10.1002/anie.202102107. ISSN 1433-7851. PMID 33686736. S2CID 232160602.
  22. Pasqualini, Leonard; Huppertz, Hubert; Je, Minyeong; Choi, Heechae; Bruns, Jörn (2021-06-13). "Triple Vertex Linkage of (BO4)-Tetrahedra in a Borosulfate: Synthesis, Crystal Structure, and Quantum Chemical Investigation of Sr[B3O(SO4)4(SO4H)]". Angewandte Chemie International Edition. 60 (36): 19740–19743. doi:10.1002/anie.202106337. ISSN 1433-7851. PMC 8456809. PMID 34121302.
  23. Netzsch, Philip; Höppe, Henning A. (2020-12-29). "Ag[B(S2O7)2]: The First Transition Metal Borosulfate Featuring Disulfate Groups". European Journal of Inorganic Chemistry. 2021 (11): 1065–1070. doi:10.1002/ejic.202001095. ISSN 1434-1948.
  24. ^ Hämmer, Matthias; Höppe, Henning A. (2022-09-02). "The Unconventional Cadmium Borosulfates Cd[B2O(SO4)3] and Cd4[B2O(SO4)6]". Zeitschrift für anorganische und allgemeine Chemie. 648 (21): zaac.202200197. doi:10.1002/zaac.202200197. ISSN 0044-2313. S2CID 252059729.
  25. van Gerven, David; Sutorius, Stefan; Bruns, Jörn; Wickleder, Mathias S. (2022-07-20). "Stabilizing the Homopolycation (I 4 ) 2+ with a Hexasulfate in (I 4 )[S 6 O 19 ] and a Borosulfate in (I 4 )[B(S 2 O 7 ) 2 ] 2". ChemistryOpen. 11 (11): e202200122. doi:10.1002/open.202200122. ISSN 2191-1363. PMC 9630045. PMID 35856862. S2CID 250941699.
  26. ^ Netzsch, Philip; Pielnhofer, Florian; Höppe, Henning A. (2020-10-19). "From S–O–S to B–O–S to B–O–B Bridges: Ba[B(S 2 O 7 ) 2 ] 2 as a Model System for the Structural Diversity in Borosulfate Chemistry". Inorganic Chemistry. 59 (20): 15180–15188. doi:10.1021/acs.inorgchem.0c02156. ISSN 0020-1669. PMID 33001636. S2CID 222145994.
  27. Schönegger, Sandra; Bruns, Jörn; Gartner, Benjamin; Wurst, Klaus; Huppertz, Hubert (2018-12-31). "Synthesis and Characterization of the First Lead(II) Borosulfate Pb[B 2 (SO 4 ) 4 ]: Synthesis and Characterization of the First Lead(II) Borosulfate Pb[B 2 (SO 4 ) 4 ]". Zeitschrift für anorganische und allgemeine Chemie. 644 (24): 1702–1706. doi:10.1002/zaac.201800130.
  28. ^ Sweet, Teagan F. M.; Felton, Daniel E.; Szymanowski, Jennifer E. S.; Burns, Peter C. (2022-09-01). "Targeting Diverse Bridging Motifs within Actinide Borosulfates and Establishing an Unconventional Structural Hierarchy". Inorganic Chemistry. 61 (40): 15953–15960. doi:10.1021/acs.inorgchem.2c02144. ISSN 0020-1669. PMID 36047685. S2CID 251977898.
Borates
H3BO3 He
Li2B4O7 Be B +(CO3)
+(C2O4)
(NH4)3BO3
+NO3
O +F Ne
Na2·8H2O
NaBO2
NaBO3
Na3BO3
Na2B8O13
Mg3(BO3)2 AlBO3 Si -PO4
+PO4
+S
-SO4
+SO4
+Cl Ar
K2B4O7•4H2O
KB5O8•4H2O
Ca3(BO3)2 ScBO3 TiBO3 -VO4 Cr Mn3(BO3)2 Fe3(BO3)2
FeBO3
FeB(OH)4
Co3(BO3)2 Ni3(BO3)2 Cu3(BO3)2 Znx(BO3)x GaBO3
-GaO4
-GeO4 -AsO4 -SeO4
-SeO3
+Se
+Br Kr
Rb3BO3
RbB11O16(OH)2
Rb•2H2O
Sr3(BO3)2 YBO3 ZrB2O5 Nb Mo Tc Ru Rh Pd Ag3BO3 Cd3(BO3)2 InBO3 Sn -SbBO4 -TeO4
-TeO3
+I Xe
Cs3BO3
CsB5O8•4H2O
BaB2O4 * Lu3B5O12 HfB2O5 Ta W Re Os Ir Pt Au Hg Tl3BO3 Pb3(BO3)2 BiBO3 Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaB3O6 CeB3O6 Pr4B10O21 NdBO3 Pm Sm Eu Gd Tb Dy4B6O15
Dy2B4O9
Ho4B6O15
Ho2B4O9
ErBO3 Tm3B5O12 Yb3B5O12
** Ac Th3(BO3)4 Pa U(BO3)2 Np Pu Am Cm Bk Cf Es Fm Md No
Categories: