This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Boundary parallel" – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) |
In mathematics, a closed n-manifold N embedded in an (n + 1)-manifold M is boundary parallel (or ∂-parallel, or peripheral) if there is an isotopy of N onto a boundary component of M.
An example
Consider the annulus . Let π denote the projection map
If a circle S is embedded into the annulus so that π restricted to S is a bijection, then S is boundary parallel. (The converse is not true.)
If, on the other hand, a circle S is embedded into the annulus so that π restricted to S is not surjective, then S is not boundary parallel. (Again, the converse is not true.)
- An example wherein π is not bijective on S, but S is ∂-parallel anyway.
- An example wherein π is bijective on S.
- An example wherein π is not surjective on S.