Misplaced Pages

Bt cotton

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Genetically modified variety of cotton

Bt cotton is a genetically modified pest resistant plant cotton variety that produces an insecticide to combat bollworm.

Description

Strains of the bacterium Bacillus thuringiensis produce over 200 different Bt toxins, each harmful to different insects. Most notably, Bt toxins are insecticidal to the larvae of moths and butterflies, beetles, cotton bollworms and flies but are harmless to other forms of life. The gene coding for Bt toxin has been inserted into cotton as a transgene, causing it to produce this natural insecticide in its tissues. In many regions, the main pests in commercial cotton are lepidopteran larvae, which are killed by the Bt protein in the genetically modified cotton they eat. This eliminates the need to use large amounts of broad-spectrum insecticides to kill lepidopteran pests (some of which have developed pyrethroid resistance). This spares natural insect predators in the farm ecology and further contributes to noninsecticide pest management.

Bt cotton is ineffective against many cotton pests such as plant bugs, stink bugs, and aphids; depending on circumstances it may be desirable to use insecticides in prevention. A 2006 study done by Cornell researchers, the Center for Chinese Agricultural Policy and the Chinese Academy of Science on Bt cotton farming in China found that after seven years these secondary pests that were normally controlled by pesticide had increased, necessitating the use of pesticides at similar levels to non-Bt cotton and causing less profit for farmers because of the extra expense of GM seeds.

Mechanism

Bt cotton was created through the addition of genes encoding toxin crystals in the Cry group of endotoxin. When insects attack and eat the cotton plant the Cry toxins or crystal protein are dissolved due to the high pH level of the insect's stomach. The dissolved and activated Cry molecules bond to cadherin-like proteins on cells comprising the brush border molecules. The epithelium of the brush border membranes separates the body cavity from the gut while allowing access to nutrients. The Cry toxin molecules attach themselves to specific locations on the cadherin-like proteins present on the epithelial cells of the midgut and ion channels are formed which allow the flow of potassium. Regulation of potassium concentration is essential and, if left unchecked, causes death of cells. Due to the formation of Cry ion channels sufficient regulation of potassium ions is lost, resulting in the death of epithelial cells. The death of such cells creates gaps in the brush border

History

Bt cotton was first approved for field trials in the United States in 1993, and first approved for commercial use in the United States in 1995. Bt cotton was approved by the Chinese government in 1997.

In 2002, a joint venture between Monsanto and Mahyco introduced Bt cotton to India.

In 2011, India grew the largest GM cotton crop at 10.6 million hectares. The U.S. GM cotton crop was 4.0 million hectares, the second largest area in the world, followed by China with 3.9 million hectares and Pakistan with 2.6 million hectares. By 2014, 96% of cotton grown in the United States was genetically modified and 95% of cotton grown in India was GM. India is the largest producer of cotton, and GM cotton, as of 2014.

Advantages

Main article: Cotton § Genetic modification

Bt cotton has several advantages over non-Bt cotton. The important advantages of Bt cotton are briefly :

  • Increases yield of cotton due to effective control of three types of bollworms, viz. American, Spotted and Pink bollworms.
  • Insects belonging to Lepidoptera (Bollworms) are sensitive to a crystalline endotoxic protein produced by the Bt gene which in turn protects cotton from bollworms.
  • Reduction in insecticide use in the cultivation of Bt cotton in which bollworms are major pests.
  • Potential reduction in the cost of cultivation (depending on seed cost versus insecticide costs).
  • Reduction in predators which help in controlling the bollworms by feeding on larvae and eggs of bollworm.

The main selling points of Bt cotton are the reductions in pesticides to be sprayed on a crop and the ecological benefits which stem from that. China first planted Bt cotton in 1997 specifically in response to an outbreak of cotton bollworm, Helicoverpa armigera, that farmers were struggling to control with conventional pesticides. Similarly in India and the US, Bt cotton initially alleviated the issues with pests whilst increasing yields and delivering higher profits for farmers.

Studies showed that the lower levels of pesticide being sprayed on the cotton crops promoted biodiversity by allowing non-target species like ladybirds, lacewings and spiders to become more abundant. Likewise it was found that integrated pest management strategies (IPM) were becoming more effective due to the lower levels of pesticide encouraging the growth of natural enemy populations.

In India alone widespread adoption of Bt cotton led to 2.4-9 million less cases of pesticide poisoning, with similar reduction also seen in other countries.

Bt-resistant pests

After the introduction of Bt cotton in northern China, non-target pests such as mirid bugs (Heteroptera: Miridae) became more abundant, because less pesticides were sprayed. In 2013, a second issue being seen across the world, was the development of Bt resistant pests limiting the usefulness of Bt crops.

Main drivers for the widespread resistance in India and China included the high proportion of Bt cotton being planted, 90% and 95% respectively in 2011, and few refuge areas.

Refuge areas of non-Bt crops limit resistance development in targeted pests. The US Environmental Protection Agency requires farmers to have refuge areas of 20–50% non-Bt crops within 0.8 km of their Bt fields. Such requirements were not seen in China, where instead farmers relied on natural refuge areas to decrease resistance.

In 2009, a novel solution to the resistance problem was trialed in Arizona, when sterile male pink bollworms (Pectinophora gossypiella) were released into populations of their wild Bt-resistant counterparts. The hypothesis was that sterile males mating with the few surviving females, who had developed resistance, would lead to a decrease in pests in the following generation. There was a dramatic reduction in pink bollworms, with only two pink bollworm larvae being found by the third year of the study.

Controversies

See also: Farmers' suicides in India and Genetically modified food controversies

In India, Bt cotton has been enveloped in controversies due to its supposed failure to reduce the need for pesticides and increase yield. The link between the introduction of Bt cotton to India and a surge in farmer suicides has been refuted by other studies, with decreased farmer suicides since Bt cotton was introduced. Bt cotton accounts for 93% of cotton grown in India.

By country

In India

Bt cotton is supplied in Maharashtra by the agri-biotechnology company Mahyco, which distributes it.

In 2001, prior to the approval of Monsanto/Mahyco Bt cotton, Navbaharat Seeds sold illegal, unapproved Bt cotton, which was grown on 11,000 hectares in Gujarat.

The use of Bt cotton in India has grown exponentially since its introduction in 2002. Eight years after the deployment of Bt cotton, India became the number one exporter of cotton globally and the second largest cotton producer in the world. India has bred Bt-cotton varieties such as Bikaneri Nerma and hybrids such as NHH-44.

Socio-economic surveys confirm that Bt cotton continues to deliver significant and multiple agronomic, economic, environmental and welfare benefits to Indian farmers and society including halved insecticide requirements and a doubling of yields.

India's success has been subject to scrutiny. Monsanto's seeds are expensive and lose vigour after one generation, prompting the Indian Council of Agricultural Research to develop a cheaper Bt cotton variety with seeds that could be reused. The cotton incorporated the cry1Ac gene from the soil bacterium Bacillus thuringiensis (Bt), making the cotton toxic to bollworms. This variety showed poor yield, was removed within a year, and contained a DNA sequence owned by Monsanto, prompting an investigation. In parts of India cases of acquired resistance against Bt cotton has occurred. Monsanto has admitted that the pink bollworm is resistant to the first generation transgenic Bt cotton that expresses the single Bt gene (Cry1Ac).

The state of Maharashtra banned the sale and distribution of Bt cotton in 2012, to promote local Indian seeds, which demand less water, fertilizers and pesticide input, but lifted the ban in 2013.

Punjab Agricultural University (PAU) has successfully developed the country's first Bt cotton varieties. ICAR has identified three varieties, namely PAU Bt 1, F1861 and RS 2013, for cultivation in Punjab, Haryana, Rajasthan. It is a cheaper alternative to Bt cotton hybrid seed.

In the US

In Hawaii, growing GMO cotton has been prohibited since 2013. Hybridization with the wild cotton species Gossypium tomentosum may be possible. Transgenic cotton is also banned in some parts of Florida.

In Africa

Burkina Faso

Burkina Faso, Africa's top cotton producer, banned GM cotton in 2016, because of economic and quality concerns.

Kenya

Bt cotton is legal in Kenya having been conditionally approved by the National Biosafety Authority in 2016, conditional on the approval of the National Environment Management Authority of Kenya. The Kenyan government is promoting its use, expecting greatly increased output and some greater filling of its own domestic demand.

See also

Notes and references

  1. ^ "Bt cotton - Explanation". University of Montana - Ethics and Public Affairs Program. 2013. Archived from the original on 9 July 2015. Retrieved 9 July 2015.
  2. Susan Lang (25 July 2006). "Seven-year glitch: Cornell warns that Chinese GM cotton farmers are losing money due to 'secondary' pests". Cornell news. Cornell University.
  3. James, Clive (1996). "Global Review of the Field Testing and Commercialization of Transgenic Plants: 1986 to 1995" (PDF). The International Service for the Acquisition of Agri-biotech Applications. Retrieved 17 July 2010.
  4. Qiu, Jane (13 May 2010). "GM crop use makes minor pests major problem". Nature. Retrieved 10 June 2016.
  5. Kazmin, Amy (18 October 2015). "Monsanto faces growing troubles in India". Financial Times. Retrieved 8 June 2016.
  6. ISAAA Brief 43-2011: Executive Summary Global Status of Commercialized Biotech/GM Crops: 2011. Retrieved 24 September 2012.
  7. Adoption of Genetically Engineered Crops in the U.S.Economic Research Service, of the U.S. Department of Agriculture
  8. "Facts and trends - India" (PDF). International Service for the Acquisition of Agri-biotech Applications.
  9. ^ Lu, Y; Wu, K; Jiang, Y; Guo, Y; Desneux, N (July 2012). "Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services". Nature. 487 (7407): 362–5. Bibcode:2012Natur.487..362L. doi:10.1038/nature11153. PMID 22722864. S2CID 4415298.
  10. Kathage, J; Qaim, M (July 2012). "Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India". Proc Natl Acad Sci U S A. 109 (29): 11652–6. Bibcode:2012PNAS..10911652K. doi:10.1073/pnas.1203647109. PMC 3406847. PMID 22753493.
  11. Morse, S; Bennett, RM; Ismael, Y (2005). "Genetically modified insect resistance in cotton: some farm level economic impacts in India". Crop Prot. 24 (5): 433–40. Bibcode:2005CrPro..24..433M. doi:10.1016/j.cropro.2004.09.008.
  12. ^ Wu, K-M; Lu, Y-H; Feng, H-Q; Jiang, Y-Y; Zhao, J-Z (September 2008). "Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton". Science. 321 (5896): 1676–8. Bibcode:2008Sci...321.1676W. doi:10.1126/science.1160550. PMID 18801998. S2CID 18498845.
  13. Smyth, Stuart J. (2020). "The human health benefits from GM crops". Plant Biotechnology Journal. 18 (4): 887–888. doi:10.1111/pbi.13261. ISSN 1467-7652. PMC 7061863. PMID 31544299.
  14. Lu, Y; Wu, K; Jiang, Y; Xia, B; Li, P; Feng, H; et al. (2010). "Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China". Science. 328 (5982): 1151–4. Bibcode:2010Sci...328.1151L. doi:10.1126/science.1187881. PMID 20466880. S2CID 2093962.
  15. Tabashnik, BE; Brévault, T; Carrière (2013). "Insect resistance to Bt crops: lessons from the first billion acres". Nat Biotechnol. 31 (6): 510–21. doi:10.1038/nbt.2597. PMID 23752438. S2CID 205278530.
  16. ^ Jayaraman KS (2012). "India investigates Bt cotton claims". Nature. Nature News. doi:10.1038/nature.2012.10015. S2CID 167762098.
  17. ^ Tabashnik, BE; Sisterson, MS; Ellsworth, PC; Dennehy, TJ; Antilla, L; Liesner, L; et al. (December 2010). "Suppressing resistance to Bt cotton with sterile insect releases". Nat Biotechnol. 28 (12): 1304–7. doi:10.1038/nbt.1704. PMID 21057498. S2CID 4988462.
  18. ^ Wan, P; Huang, Y; Wu, H; Huang, M; Cong, S; Tabashnik, BE; et al. (2012). "Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China. Smagghe G, editor". PLOS ONE. 7 (1): e29975. doi:10.1371/journal.pone.0029975. PMC 3251611. PMID 22238687.
  19. Hutchison, WD; Burkness, EC; Mitchell, PD; Moon, RD; Leslie, TW; Fleischer, SJ; et al. (October 2010). "Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers". Science. 330 (6001): 222–5. Bibcode:2010Sci...330..222H. doi:10.1126/science.1190242. PMID 20929774. S2CID 238816.
  20. Vandana, Dr. Shiva; Afsar H. Jafri (Winter 2004). "Failure of GMOs in India". Research Foundation for Science, Technology and Ecology. Retrieved 27 September 2013.
  21. Gruere, Guillaume (2008). "Bt Cotton and farmer suicides in India: Reviewing the Evidence" (PDF). International Food Policy Research Institute. Retrieved 24 February 2014.
  22. Plewis, I (2014). "Indian farmer suicides: Is GM cotton to blame?". Significance. 11 (1): 14–18. doi:10.1111/j.1740-9713.2014.00719.x.
  23. ^ Vivek Deshpande (6 May 2013). "Maharashtra lifts ban on Mahyco's Bt cotton seeds". Nagpur. Indian Express. Retrieved 3 September 2013.
  24. Jayaraman, K.S. (December 2001). "Illegal Bt cotton in India haunts regulators". Nature Biotechnology. 19 (12): 1090. doi:10.1038/nbt1201-1090. PMID 11731762. S2CID 5158158.
  25. KV Kurmanath (22 March 2016). "Bt cotton: how it flowered and is losing lustre now". The Hindu.
  26. ^ Choudhary, B.; Gaur, K. (2010). "Bt Cotton in India: A Country Profile". ISAAA. Series of Biotech Crop Profiles. Ithaca, New York.
  27. James, Clive (2009). "Global Status of Commercialized Biotech/GM Crops: 2009" (PDF). ISAAA. ISAAA Briefs (41). Ithaca, New York.
  28. "Maharashtra bans Bt cotton seeds". The Times of India. 9 August 2012.
  29. "Indian Universities Develop Bt Cotton Varieties with Reusable Seeds". Crop Biotech Update. ISAAA (International Service for the Acquisition of Agri-biotech Applications). 15 March 2017. Retrieved 2 May 2022.
  30. "PAU develops country's first Bt cotton varieties". The Hindu. 8 March 2017. Retrieved 2 May 2022.
  31. Robynne Boyd (19 November 2013). "Hawaii's Big Island Bans Biotech Companies & GMO Crops". Huffington Post. Retrieved 24 October 2015.
  32. "Top African producer bans GM cotton". Phys.org. Retrieved 9 June 2016.
  33. "Bt Cotton Ready For Harvesting". Kenya News Agency. 9 August 2021.
Genetic engineering
Genetically
modified
organisms
Crops
Maize/corn
Potato
Rice
Soybean
Tomato
Cotton
Wheat
Other
Animals
Mammals
Other animals
Bacteria
and viruses
Processes
Inserting DNA
Types
Uses
In agriculture
In humans and
diagnostics
In research
Related
articles
Regulation
Geography
Similar fields

Categories: