Misplaced Pages

Bunch–Nielsen–Sorensen formula

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, in particular linear algebra, the Bunch–Nielsen–Sorensen formula, named after James R. Bunch, Christopher P. Nielsen and Danny C. Sorensen, expresses the eigenvectors of the sum of a symmetric matrix A {\displaystyle A} and the outer product, v v T {\displaystyle vv^{T}} , of vector v {\displaystyle v} with itself.

Statement

Let λ i {\displaystyle \lambda _{i}} denote the eigenvalues of A {\displaystyle A} and λ ~ i {\displaystyle {\tilde {\lambda }}_{i}} denote the eigenvalues of the updated matrix A ~ = A + v v T {\displaystyle {\tilde {A}}=A+vv^{T}} . In the special case when A {\displaystyle A} is diagonal, the eigenvectors q ~ i {\displaystyle {\tilde {q}}_{i}} of A ~ {\displaystyle {\tilde {A}}} can be written

( q ~ i ) k = N i v k λ k λ ~ i {\displaystyle ({\tilde {q}}_{i})_{k}={\frac {N_{i}v_{k}}{\lambda _{k}-{\tilde {\lambda }}_{i}}}}

where N i {\displaystyle N_{i}} is a number that makes the vector q ~ i {\displaystyle {\tilde {q}}_{i}} normalized.

Derivation

This formula can be derived from the Sherman–Morrison formula by examining the poles of ( A λ ~ I + v v T ) 1 {\displaystyle (A-{\tilde {\lambda }}I+vv^{T})^{-1}} .

Remarks

The eigenvalues of A ~ {\displaystyle {\tilde {A}}} were studied by Golub.

Numerical stability of the computation is studied by Gu and Eisenstat.

See also

References

  1. Bunch, J. R.; Nielsen, C. P.; Sorensen, D. C. (1978). "Rank-one modification of the symmetric eigenproblem". Numerische Mathematik. 31: 31–48. doi:10.1007/BF01396012. S2CID 120776348.
  2. Golub, G. H. (1973). "Some Modified Matrix Eigenvalue Problems". SIAM Review. 15 (2): 318–334. CiteSeerX 10.1.1.454.9868. doi:10.1137/1015032.
  3. Gu, M.; Eisenstat, S. C. (1994). "A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem". SIAM Journal on Matrix Analysis and Applications. 15 (4): 1266. doi:10.1137/S089547989223924X.

External links

Category: