Misplaced Pages

Bussgang theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Bussgang theorem is a theorem of stochastic analysis. The theorem states that the cross-correlation between a Gaussian signal before and after it has passed through a nonlinear operation are equal to the signals auto-correlation up to a constant. It was first published by Julian J. Bussgang in 1952 while he was at the Massachusetts Institute of Technology.

Statement

Let { X ( t ) } {\displaystyle \left\{X(t)\right\}} be a zero-mean stationary Gaussian random process and { Y ( t ) } = g ( X ( t ) ) {\displaystyle \left\{Y(t)\right\}=g(X(t))} where g ( ) {\displaystyle g(\cdot )} is a nonlinear amplitude distortion.

If R X ( τ ) {\displaystyle R_{X}(\tau )} is the autocorrelation function of { X ( t ) } {\displaystyle \left\{X(t)\right\}} , then the cross-correlation function of { X ( t ) } {\displaystyle \left\{X(t)\right\}} and { Y ( t ) } {\displaystyle \left\{Y(t)\right\}} is

R X Y ( τ ) = C R X ( τ ) , {\displaystyle R_{XY}(\tau )=CR_{X}(\tau ),}

where C {\displaystyle C} is a constant that depends only on g ( ) {\displaystyle g(\cdot )} .

It can be further shown that

C = 1 σ 3 2 π u g ( u ) e u 2 2 σ 2 d u . {\displaystyle C={\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\int _{-\infty }^{\infty }ug(u)e^{-{\frac {u^{2}}{2\sigma ^{2}}}}\,du.}

Derivation for One-bit Quantization

It is a property of the two-dimensional normal distribution that the joint density of y 1 {\displaystyle y_{1}} and y 2 {\displaystyle y_{2}} depends only on their covariance and is given explicitly by the expression

p ( y 1 , y 2 ) = 1 2 π 1 ρ 2 e y 1 2 + y 2 2 2 ρ y 1 y 2 2 ( 1 ρ 2 ) {\displaystyle p(y_{1},y_{2})={\frac {1}{2\pi {\sqrt {1-\rho ^{2}}}}}e^{-{\frac {y_{1}^{2}+y_{2}^{2}-2\rho y_{1}y_{2}}{2(1-\rho ^{2})}}}}

where y 1 {\displaystyle y_{1}} and y 2 {\displaystyle y_{2}} are standard Gaussian random variables with correlation ϕ y 1 y 2 = ρ {\displaystyle \phi _{y_{1}y_{2}}=\rho } .

Assume that r 2 = Q ( y 2 ) {\displaystyle r_{2}=Q(y_{2})} , the correlation between y 1 {\displaystyle y_{1}} and r 2 {\displaystyle r_{2}} is,

ϕ y 1 r 2 = 1 2 π 1 ρ 2 y 1 Q ( y 2 ) e y 1 2 + y 2 2 2 ρ y 1 y 2 2 ( 1 ρ 2 ) d y 1 d y 2 {\displaystyle \phi _{y_{1}r_{2}}={\frac {1}{2\pi {\sqrt {1-\rho ^{2}}}}}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }y_{1}Q(y_{2})e^{-{\frac {y_{1}^{2}+y_{2}^{2}-2\rho y_{1}y_{2}}{2(1-\rho ^{2})}}}\,dy_{1}dy_{2}} .

Since

y 1 e 1 2 ( 1 ρ 2 ) y 1 2 + ρ y 2 1 ρ 2 y 1 d y 1 = ρ 2 π ( 1 ρ 2 ) y 2 e ρ 2 y 2 2 2 ( 1 ρ 2 ) {\displaystyle \int _{-\infty }^{\infty }y_{1}e^{-{\frac {1}{2(1-\rho ^{2})}}y_{1}^{2}+{\frac {\rho y_{2}}{1-\rho ^{2}}}y_{1}}\,dy_{1}=\rho {\sqrt {2\pi (1-\rho ^{2})}}y_{2}e^{\frac {\rho ^{2}y_{2}^{2}}{2(1-\rho ^{2})}}} ,

the correlation ϕ y 1 r 2 {\displaystyle \phi _{y_{1}r_{2}}} may be simplified as

ϕ y 1 r 2 = ρ 2 π y 2 Q ( y 2 ) e y 2 2 2 d y 2 {\displaystyle \phi _{y_{1}r_{2}}={\frac {\rho }{\sqrt {2\pi }}}\int _{-\infty }^{\infty }y_{2}Q(y_{2})e^{-{\frac {y_{2}^{2}}{2}}}\,dy_{2}} .

The integral above is seen to depend only on the distortion characteristic Q ( ) {\displaystyle Q()} and is independent of ρ {\displaystyle \rho } .

Remembering that ρ = ϕ y 1 y 2 {\displaystyle \rho =\phi _{y_{1}y_{2}}} , we observe that for a given distortion characteristic Q ( ) {\displaystyle Q()} , the ratio ϕ y 1 r 2 ϕ y 1 y 2 {\displaystyle {\frac {\phi _{y_{1}r_{2}}}{\phi _{y_{1}y_{2}}}}} is K Q = 1 2 π y 2 Q ( y 2 ) e y 2 2 2 d y 2 {\displaystyle K_{Q}={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }y_{2}Q(y_{2})e^{-{\frac {y_{2}^{2}}{2}}}\,dy_{2}} .

Therefore, the correlation can be rewritten in the form

ϕ y 1 r 2 = K Q ϕ y 1 y 2 {\displaystyle \phi _{y_{1}r_{2}}=K_{Q}\phi _{y_{1}y_{2}}} .

The above equation is the mathematical expression of the stated "Bussgang‘s theorem".

If Q ( x ) = sign ( x ) {\displaystyle Q(x)={\text{sign}}(x)} , or called one-bit quantization, then K Q = 2 2 π 0 y 2 e y 2 2 2 d y 2 = 2 π {\displaystyle K_{Q}={\frac {2}{\sqrt {2\pi }}}\int _{0}^{\infty }y_{2}e^{-{\frac {y_{2}^{2}}{2}}}\,dy_{2}={\sqrt {\frac {2}{\pi }}}} .

Arcsine law

If the two random variables are both distorted, i.e., r 1 = Q ( y 1 ) , r 2 = Q ( y 2 ) {\displaystyle r_{1}=Q(y_{1}),r_{2}=Q(y_{2})} , the correlation of r 1 {\displaystyle r_{1}} and r 2 {\displaystyle r_{2}} is

ϕ r 1 r 2 = Q ( y 1 ) Q ( y 2 ) p ( y 1 , y 2 ) d y 1 d y 2 {\displaystyle \phi _{r_{1}r_{2}}=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }Q(y_{1})Q(y_{2})p(y_{1},y_{2})\,dy_{1}dy_{2}} .

When Q ( x ) = sign ( x ) {\displaystyle Q(x)={\text{sign}}(x)} , the expression becomes,

ϕ r 1 r 2 = 1 2 π 1 ρ 2 [ 0 0 e α d y 1 d y 2 + 0 0 e α d y 1 d y 2 0 0 e α d y 1 d y 2 0 0 e α d y 1 d y 2 ] {\displaystyle \phi _{r_{1}r_{2}}={\frac {1}{2\pi {\sqrt {1-\rho ^{2}}}}}\left}

where α = y 1 2 + y 2 2 2 ρ y 1 y 2 2 ( 1 ρ 2 ) {\displaystyle \alpha ={\frac {y_{1}^{2}+y_{2}^{2}-2\rho y_{1}y_{2}}{2(1-\rho ^{2})}}} .

Noticing that

p ( y 1 , y 2 ) d y 1 d y 2 = 1 2 π 1 ρ 2 [ 0 0 e α d y 1 d y 2 + 0 0 e α d y 1 d y 2 + 0 0 e α d y 1 d y 2 + 0 0 e α d y 1 d y 2 ] = 1 {\displaystyle \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }p(y_{1},y_{2})\,dy_{1}dy_{2}={\frac {1}{2\pi {\sqrt {1-\rho ^{2}}}}}\left=1} ,

and 0 0 e α d y 1 d y 2 = 0 0 e α d y 1 d y 2 {\displaystyle \int _{0}^{\infty }\int _{0}^{\infty }e^{-\alpha }\,dy_{1}dy_{2}=\int _{-\infty }^{0}\int _{-\infty }^{0}e^{-\alpha }\,dy_{1}dy_{2}} , 0 0 e α d y 1 d y 2 = 0 0 e α d y 1 d y 2 {\displaystyle \int _{0}^{\infty }\int _{-\infty }^{0}e^{-\alpha }\,dy_{1}dy_{2}=\int _{-\infty }^{0}\int _{0}^{\infty }e^{-\alpha }\,dy_{1}dy_{2}} ,

we can simplify the expression of ϕ r 1 r 2 {\displaystyle \phi _{r_{1}r_{2}}} as

ϕ r 1 r 2 = 4 2 π 1 ρ 2 0 0 e α d y 1 d y 2 1 {\displaystyle \phi _{r_{1}r_{2}}={\frac {4}{2\pi {\sqrt {1-\rho ^{2}}}}}\int _{0}^{\infty }\int _{0}^{\infty }e^{-\alpha }\,dy_{1}dy_{2}-1}

Also, it is convenient to introduce the polar coordinate y 1 = R cos θ , y 2 = R sin θ {\displaystyle y_{1}=R\cos \theta ,y_{2}=R\sin \theta } . It is thus found that

ϕ r 1 r 2 = 4 2 π 1 ρ 2 0 π / 2 0 e R 2 2 R 2 ρ cos θ sin θ   2 ( 1 ρ 2 ) R d R d θ 1 = 4 2 π 1 ρ 2 0 π / 2 0 e R 2 ( 1 ρ sin 2 θ ) 2 ( 1 ρ 2 ) R d R d θ 1 {\displaystyle \phi _{r_{1}r_{2}}={\frac {4}{2\pi {\sqrt {1-\rho ^{2}}}}}\int _{0}^{\pi /2}\int _{0}^{\infty }e^{-{\frac {R^{2}-2R^{2}\rho \cos \theta \sin \theta \ }{2(1-\rho ^{2})}}}R\,dRd\theta -1={\frac {4}{2\pi {\sqrt {1-\rho ^{2}}}}}\int _{0}^{\pi /2}\int _{0}^{\infty }e^{-{\frac {R^{2}(1-\rho \sin 2\theta )}{2(1-\rho ^{2})}}}R\,dRd\theta -1} .

Integration gives

ϕ r 1 r 2 = 2 1 ρ 2 π 0 π / 2 d θ 1 ρ sin 2 θ 1 = 2 π arctan ( ρ tan θ 1 ρ 2 ) | 0 π / 2 1 = 2 π arcsin ( ρ ) {\displaystyle \phi _{r_{1}r_{2}}={\frac {2{\sqrt {1-\rho ^{2}}}}{\pi }}\int _{0}^{\pi /2}{\frac {d\theta }{1-\rho \sin 2\theta }}-1=-{\frac {2}{\pi }}\arctan \left({\frac {\rho -\tan \theta }{\sqrt {1-\rho ^{2}}}}\right){\Bigg |}_{0}^{\pi /2}-1={\frac {2}{\pi }}\arcsin(\rho )}

This is called "Arcsine law", which was first found by J. H. Van Vleck in 1943 and republished in 1966. The "Arcsine law" can also be proved in a simpler way by applying Price's Theorem.

The function f ( x ) = 2 π arcsin x {\displaystyle f(x)={\frac {2}{\pi }}\arcsin x} can be approximated as f ( x ) 2 π x {\displaystyle f(x)\approx {\frac {2}{\pi }}x} when x {\displaystyle x} is small.

Price's Theorem

Given two jointly normal random variables y 1 {\displaystyle y_{1}} and y 2 {\displaystyle y_{2}} with joint probability function

p ( y 1 , y 2 ) = 1 2 π 1 ρ 2 e y 1 2 + y 2 2 2 ρ y 1 y 2 2 ( 1 ρ 2 ) {\displaystyle {\displaystyle p(y_{1},y_{2})={\frac {1}{2\pi {\sqrt {1-\rho ^{2}}}}}e^{-{\frac {y_{1}^{2}+y_{2}^{2}-2\rho y_{1}y_{2}}{2(1-\rho ^{2})}}}}} ,

we form the mean

I ( ρ ) = E ( g ( y 1 , y 2 ) ) = + + g ( y 1 , y 2 ) p ( y 1 , y 2 ) d y 1 d y 2 {\displaystyle I(\rho )=E(g(y_{1},y_{2}))=\int _{-\infty }^{+\infty }\int _{-\infty }^{+\infty }g(y_{1},y_{2})p(y_{1},y_{2})\,dy_{1}dy_{2}}

of some function g ( y 1 , y 2 ) {\displaystyle g(y_{1},y_{2})} of ( y 1 , y 2 ) {\displaystyle (y_{1},y_{2})} . If g ( y 1 , y 2 ) p ( y 1 , y 2 ) 0 {\displaystyle g(y_{1},y_{2})p(y_{1},y_{2})\rightarrow 0} as ( y 1 , y 2 ) 0 {\displaystyle (y_{1},y_{2})\rightarrow 0} , then

n I ( ρ ) ρ n = 2 n g ( y 1 , y 2 ) y 1 n y 2 n p ( y 1 , y 2 ) d y 1 d y 2 = E ( 2 n g ( y 1 , y 2 ) y 1 n y 2 n ) {\displaystyle {\frac {\partial ^{n}I(\rho )}{\partial \rho ^{n}}}=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }{\frac {\partial ^{2n}g(y_{1},y_{2})}{\partial y_{1}^{n}\partial y_{2}^{n}}}p(y_{1},y_{2})\,dy_{1}dy_{2}=E\left({\frac {\partial ^{2n}g(y_{1},y_{2})}{\partial y_{1}^{n}\partial y_{2}^{n}}}\right)} .

Proof. The joint characteristic function of the random variables y 1 {\displaystyle y_{1}} and y 2 {\displaystyle y_{2}} is by definition the integral

Φ ( ω 1 , ω 2 ) = p ( y 1 , y 2 ) e j ( ω 1 y 1 + ω 2 y 2 ) d y 1 d y 2 = exp { ω 1 2 + ω 2 2 + 2 ρ ω 1 ω 2 2 } {\displaystyle \Phi (\omega _{1},\omega _{2})=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }p(y_{1},y_{2})e^{j(\omega _{1}y_{1}+\omega _{2}y_{2})}\,dy_{1}dy_{2}=\exp \left\{-{\frac {\omega _{1}^{2}+\omega _{2}^{2}+2\rho \omega _{1}\omega _{2}}{2}}\right\}} .

From the two-dimensional inversion formula of Fourier transform, it follows that

p ( y 1 , y 2 ) = 1 4 π 2 Φ ( ω 1 , ω 2 ) e j ( ω 1 y 1 + ω 2 y 2 ) d ω 1 d ω 2 = 1 4 π 2 exp { ω 1 2 + ω 2 2 + 2 ρ ω 1 ω 2 2 } e j ( ω 1 y 1 + ω 2 y 2 ) d ω 1 d ω 2 {\displaystyle p(y_{1},y_{2})={\frac {1}{4\pi ^{2}}}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\Phi (\omega _{1},\omega _{2})e^{-j(\omega _{1}y_{1}+\omega _{2}y_{2})}\,d\omega _{1}d\omega _{2}={\frac {1}{4\pi ^{2}}}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\exp \left\{-{\frac {\omega _{1}^{2}+\omega _{2}^{2}+2\rho \omega _{1}\omega _{2}}{2}}\right\}e^{-j(\omega _{1}y_{1}+\omega _{2}y_{2})}\,d\omega _{1}d\omega _{2}} .

Therefore, plugging the expression of p ( y 1 , y 2 ) {\displaystyle p(y_{1},y_{2})} into I ( ρ ) {\displaystyle I(\rho )} , and differentiating with respect to ρ {\displaystyle \rho } , we obtain

n I ( ρ ) ρ n = g ( y 1 , y 2 ) p ( y 1 , y 2 ) d y 1 d y 2 = g ( y 1 , y 2 ) ( 1 4 π 2 n Φ ( ω 1 , ω 2 ) ρ n e j ( ω 1 y 1 + ω 2 y 2 ) d ω 1 d ω 2 ) d y 1 d y 2 = g ( y 1 , y 2 ) ( ( 1 ) n 4 π 2 ω 1 n ω 2 n Φ ( ω 1 , ω 2 ) e j ( ω 1 y 1 + ω 2 y 2 ) d ω 1 d ω 2 ) d y 1 d y 2 = g ( y 1 , y 2 ) ( 1 4 π 2 Φ ( ω 1 , ω 2 ) 2 n e j ( ω 1 y 1 + ω 2 y 2 ) y 1 n y 2 n d ω 1 d ω 2 ) d y 1 d y 2 = g ( y 1 , y 2 ) 2 n p ( y 1 , y 2 ) y 1 n y 2 n d y 1 d y 2 {\displaystyle {\begin{aligned}{\frac {\partial ^{n}I(\rho )}{\partial \rho ^{n}}}&=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }g(y_{1},y_{2})p(y_{1},y_{2})\,dy_{1}dy_{2}\\&=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }g(y_{1},y_{2})\left({\frac {1}{4\pi ^{2}}}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }{\frac {\partial ^{n}\Phi (\omega _{1},\omega _{2})}{\partial \rho ^{n}}}e^{-j(\omega _{1}y_{1}+\omega _{2}y_{2})}\,d\omega _{1}d\omega _{2}\right)\,dy_{1}dy_{2}\\&=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }g(y_{1},y_{2})\left({\frac {(-1)^{n}}{4\pi ^{2}}}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\omega _{1}^{n}\omega _{2}^{n}\Phi (\omega _{1},\omega _{2})e^{-j(\omega _{1}y_{1}+\omega _{2}y_{2})}\,d\omega _{1}d\omega _{2}\right)\,dy_{1}dy_{2}\\&=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }g(y_{1},y_{2})\left({\frac {1}{4\pi ^{2}}}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\Phi (\omega _{1},\omega _{2}){\frac {\partial ^{2n}e^{-j(\omega _{1}y_{1}+\omega _{2}y_{2})}}{\partial y_{1}^{n}\partial y_{2}^{n}}}\,d\omega _{1}d\omega _{2}\right)\,dy_{1}dy_{2}\\&=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }g(y_{1},y_{2}){\frac {\partial ^{2n}p(y_{1},y_{2})}{\partial y_{1}^{n}\partial y_{2}^{n}}}\,dy_{1}dy_{2}\\\end{aligned}}}

After repeated integration by parts and using the condition at {\displaystyle \infty } , we obtain the Price's theorem.

n I ( ρ ) ρ n = g ( y 1 , y 2 ) 2 n p ( y 1 , y 2 ) y 1 n y 2 n d y 1 d y 2 = 2 g ( y 1 , y 2 ) y 1 y 2 2 n 2 p ( y 1 , y 2 ) y 1 n 1 y 2 n 1 d y 1 d y 2 = = 2 n g ( y 1 , y 2 ) y 1 n y 2 n p ( y 1 , y 2 ) d y 1 d y 2 {\displaystyle {\begin{aligned}{\frac {\partial ^{n}I(\rho )}{\partial \rho ^{n}}}&=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }g(y_{1},y_{2}){\frac {\partial ^{2n}p(y_{1},y_{2})}{\partial y_{1}^{n}\partial y_{2}^{n}}}\,dy_{1}dy_{2}\\&=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }{\frac {\partial ^{2}g(y_{1},y_{2})}{\partial y_{1}\partial y_{2}}}{\frac {\partial ^{2n-2}p(y_{1},y_{2})}{\partial y_{1}^{n-1}\partial y_{2}^{n-1}}}\,dy_{1}dy_{2}\\&=\cdots \\&=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }{\frac {\partial ^{2n}g(y_{1},y_{2})}{\partial y_{1}^{n}\partial y_{2}^{n}}}p(y_{1},y_{2})\,dy_{1}dy_{2}\end{aligned}}}

Proof of Arcsine law by Price's Theorem

If g ( y 1 , y 2 ) = sign ( y 1 ) sign ( y 2 ) {\displaystyle g(y_{1},y_{2})={\text{sign}}(y_{1}){\text{sign}}(y_{2})} , then 2 g ( y 1 , y 2 ) y 1 y 2 = 4 δ ( y 1 ) δ ( y 2 ) {\displaystyle {\frac {\partial ^{2}g(y_{1},y_{2})}{\partial y_{1}\partial y_{2}}}=4\delta (y_{1})\delta (y_{2})} where δ ( ) {\displaystyle \delta ()} is the Dirac delta function.

Substituting into Price's Theorem, we obtain,

E ( sign ( y 1 ) sign ( y 2 ) ) ρ = I ( ρ ) ρ = 4 δ ( y 1 ) δ ( y 2 ) p ( y 1 , y 2 ) d y 1 d y 2 = 2 π 1 ρ 2 {\displaystyle {\frac {\partial E({\text{sign}}(y_{1}){\text{sign}}(y_{2}))}{\partial \rho }}={\frac {\partial I(\rho )}{\partial \rho }}=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }4\delta (y_{1})\delta (y_{2})p(y_{1},y_{2})\,dy_{1}dy_{2}={\frac {2}{\pi {\sqrt {1-\rho ^{2}}}}}} .

When ρ = 0 {\displaystyle \rho =0} , I ( ρ ) = 0 {\displaystyle I(\rho )=0} . Thus

E ( sign ( y 1 ) sign ( y 2 ) ) = I ( ρ ) = 2 π 0 ρ 1 1 ρ 2 d ρ = 2 π arcsin ( ρ ) {\displaystyle E\left({\text{sign}}(y_{1}){\text{sign}}(y_{2})\right)=I(\rho )={\frac {2}{\pi }}\int _{0}^{\rho }{\frac {1}{\sqrt {1-\rho ^{2}}}}\,d\rho ={\frac {2}{\pi }}\arcsin(\rho )} ,

which is Van Vleck's well-known result of "Arcsine law".

Application

This theorem implies that a simplified correlator can be designed. Instead of having to multiply two signals, the cross-correlation problem reduces to the gating of one signal with another.

References

  1. ^ J.J. Bussgang,"Cross-correlation function of amplitude-distorted Gaussian signals", Res. Lab. Elec., Mas. Inst. Technol., Cambridge MA, Tech. Rep. 216, March 1952.
  2. ^ Vleck, J. H. Van. "The Spectrum of Clipped Noise". Radio Research Laboratory Report of Harvard University (51).
  3. ^ Vleck, J. H. Van; Middleton, D. (January 1966). "The spectrum of clipped noise". Proceedings of the IEEE. 54 (1): 2–19. doi:10.1109/PROC.1966.4567. ISSN 1558-2256.
  4. ^ Price, R. (June 1958). "A useful theorem for nonlinear devices having Gaussian inputs". IRE Transactions on Information Theory. 4 (2): 69–72. doi:10.1109/TIT.1958.1057444. ISSN 2168-2712.
  5. ^ Papoulis, Athanasios (2002). Probability, Random Variables, and Stochastic Processes. McGraw-Hill. p. 396. ISBN 0-07-366011-6.

Further reading

Category: