CRISPR RNA or crRNA is a RNA transcript from the CRISPR locus. CRISPR-Cas (clustered, regularly interspaced short palindromic repeats - CRISPR associated systems) is an adaptive immune system found in bacteria and archaea to protect against mobile genetic elements, like viruses, plasmids, and transposons. The CRISPR locus contains a series of repeats interspaced with unique spacers. These unique spacers can be acquired from MGEs.
Pre-crRNA is formed after the transcription of the CRISPR locus and before being processed by Cas proteins. Mature crRNA transcripts contain a partial conserved section of repeat and a sequence of spacer that is complementary to the target DNA. crRNA forms an effector complex with a single nuclease or multiple Cas proteins called a Cascade (CRISPR-associated complex for antiviral defense). Once the effector complex is formed a Cas nuclease or single effector protein will cause interference guided by the crRNA match.
Function
Type-I
Type-I CRISPR systems are characterized by Cas3, a nuclease-helicase protein, and the multi-subunit Cascade (CRISPR-associated complex for antiviral defense). The crRNA can form a complex with the Cas proteins in the Cascade and guide the complex to the target DNA sequence. Cas3 is recruited for the nuclease-helicase activity.
Typically in the Cascade, Cas6 generates the mature crRNAs while Cas5 and Cas7 process and stabilize the crRNA.
Type-II
Type-II CRISPR systems are characterized by the single signature nuclease Cas9. In type-II CRISPR systems crRNA and tracrRNA (trans-activating CRISPR RNA) can form a complex known as the guide RNA or gRNA. The crRNA within the gRNA is what matches up with the target sequence or protospacer after the PAM is found. Once the match is made Cas9 will make a double-stranded break.
Type-III
Type-III CRISPR systems are characterized by Cas10, an RNA cleaving protein. Similar to type-I, a large subunit effector complex is formed and crRNA guides the complex to the target sequence. Cas6 helps to generate the mature crRNA.
Type-IV
Type-IV CRISPR systems do not have an effector nuclease and are associated with plasmids and prophages. A Cas6-like enzyme is associated with the maturation of the crRNA. Not all type-IV systems have a CRISPR locus and therefore do not have crRNA.
Type-V
Type-V CRISPR systems are characterized by Cas12, a nuclease that can cleave ssDNA, dsDNA, and RNA. Like Cas9, Cas12 is the single effector nuclease. Type-V systems process pre-crRNA without tracrRNA. The mature crRNA in complex with Cas12 target the DNA sequence of interest and cleave the DNA.
Type-VI
Type-VI CRISPR systems are characterized by Cas13, a single effector protein that targets RNA. Like the type-V system, Cas13 can process the pre-crRNA without tracrRNA. The mature crRNA in complex with Cas13 guides the complex to the target RNA and degrades it.
References
- ^ Gasiunas, Giedrius; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus (2012-09-25). "Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria". Proceedings of the National Academy of Sciences. 109 (39): E2579-86. doi:10.1073/pnas.1208507109. ISSN 0027-8424. PMC 3465414. PMID 22949671.
- ^ Faure, Guilhem; Shmakov, Sergey A.; Yan, Winston X.; Cheng, David R.; Scott, David A.; Peters, Joseph E.; Makarova, Kira S.; Koonin, Eugene V. (August 2019). "CRISPR–Cas in mobile genetic elements: counter-defence and beyond". Nature Reviews Microbiology. 17 (8): 513–525. doi:10.1038/s41579-019-0204-7. ISSN 1740-1534. PMC 11165670. PMID 31165781. S2CID 174809341.
- ^ Karvelis, Tautvydas; Gasiunas, Giedrius; Miksys, Algirdas; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus (2013-05-01). "crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus". RNA Biology. 10 (5): 841–851. doi:10.4161/rna.24203. ISSN 1547-6286. PMC 3737341. PMID 23535272.
- Jinek, Martin; Chylinski, Krzysztof; Fonfara, Ines; Hauer, Michael; Doudna, Jennifer A.; Charpentier, Emmanuelle (2012-08-17). "A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity". Science. 337 (6096): 816–821. Bibcode:2012Sci...337..816J. doi:10.1126/science.1225829. ISSN 0036-8075. PMC 6286148. PMID 22745249.
- Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus (2011-04-06). "Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system". The EMBO Journal. 30 (7): 1335–1342. doi:10.1038/emboj.2011.41. ISSN 0261-4189. PMC 3094125. PMID 21343909.
- Brendel, Jutta; Stoll, Britta; Lange, Sita J.; Sharma, Kundan; Lenz, Christof; Stachler, Aris-Edda; Maier, Lisa-Katharina; Richter, Hagen; Nickel, Lisa; Schmitz, Ruth A.; Randau, Lennart; Allers, Thorsten; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita (2014-03-07). "A Complex of Cas Proteins 5, 6, and 7 Is Required for the Biogenesis and Stability of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii". The Journal of Biological Chemistry. 289 (10): 7164–7177. doi:10.1074/jbc.M113.508184. ISSN 0021-9258. PMC 3945376. PMID 24459147.
- ^ Makarova, Kira S.; Wolf, Yuri I.; Iranzo, Jaime; Shmakov, Sergey A.; Alkhnbashi, Omer S.; Brouns, Stan J. J.; Charpentier, Emmanuelle; Cheng, David; Haft, Daniel H.; Horvath, Philippe; Moineau, Sylvain; Mojica, Francisco J. M.; Scott, David; Shah, Shiraz A.; Siksnys, Virginijus (February 2020). "Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants". Nature Reviews Microbiology. 18 (2): 67–83. doi:10.1038/s41579-019-0299-x. ISSN 1740-1534. PMC 8905525. PMID 31857715.
- Heler, Robert; Samai, Poulami; Modell, Joshua W.; Weiner, Catherine; Goldberg, Gregory W.; Bikard, David; Marraffini, Luciano A. (2015-03-12). "Cas9 specifies functional viral targets during CRISPR-Cas adaptation". Nature. 519 (7542): 199–202. Bibcode:2015Natur.519..199H. doi:10.1038/nature14245. ISSN 0028-0836. PMC 4385744. PMID 25707807.
- Charpentier, Emmanuelle; Richter, Hagen; van der Oost, John; White, Malcolm F. (2015-05-01). "Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity". FEMS Microbiology Reviews. 39 (3): 428–441. doi:10.1093/femsre/fuv023. ISSN 0168-6445. PMC 5965381. PMID 25994611.
- ^ Kolesnik, Matvey V.; Fedorova, Iana; Karneyeva, Karyna A.; Artamonova, Daria N.; Severinov, Konstantin V. (2021-10-01). "Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System". Biochemistry (Moscow). 86 (10): 1301–1314. doi:10.1134/S0006297921100114. ISSN 1608-3040. PMC 8527444. PMID 34903162.
- Pinilla-Redondo, Rafael; Mayo-Muñoz, David; Russel, Jakob; Garrett, Roger A.; Randau, Lennart; Sørensen, Søren J.; Shah, Shiraz A. (2020-02-28). "Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids". Nucleic Acids Research. 48 (4): 2000–2012. doi:10.1093/nar/gkz1197. ISSN 1362-4962. PMC 7038947. PMID 31879772.
- Paul, Bijoya; Montoya, Guillermo (February 2020). "CRISPR-Cas12a: Functional overview and applications". Biomedical Journal. 43 (1): 8–17. doi:10.1016/j.bj.2019.10.005. ISSN 2319-4170. PMC 7090318. PMID 32200959.
- O'Connell, Mitchell R. (2019-01-04). "Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems". Journal of Molecular Biology. 431 (1): 66–87. doi:10.1016/j.jmb.2018.06.029. ISSN 1089-8638. PMID 29940185. S2CID 49414939.