Misplaced Pages

Central triangle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Triangle related to a given triangle by two functions
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Central triangle" – news · newspapers · books · scholar · JSTOR (May 2024) (Learn how and when to remove this message)

In geometry, a central triangle is a triangle in the plane of the reference triangle. The trilinear coordinates of its vertices relative to the reference triangle are expressible in a certain cyclical way in terms of two functions having the same degree of homogeneity. At least one of the two functions must be a triangle center function. The excentral triangle is an example of a central triangle. The central triangles have been classified into three types based on the properties of the two functions.

Definition

Triangle center function

A triangle center function is a real valued function ⁠ F ( u , v , w ) {\displaystyle F(u,v,w)} ⁠ of three real variables u, v, w having the following properties:

  • Homogeneity property: F ( t u , t v , t w ) = t n F ( u , v , w ) {\displaystyle F(tu,tv,tw)=t^{n}F(u,v,w)} for some constant n and for all t > 0. The constant n is the degree of homogeneity of the function ⁠ F ( u , v , w ) . {\displaystyle F(u,v,w).}
  • Bisymmetry property: F ( u , v , w ) = F ( u , w , v ) . {\displaystyle F(u,v,w)=F(u,w,v).}

Central triangles of Type 1

Let ⁠ f ( u , v , w ) {\displaystyle f(u,v,w)} ⁠ and ⁠ g ( u , v , w ) {\displaystyle g(u,v,w)} ⁠ be two triangle center functions, not both identically zero functions, having the same degree of homogeneity. Let a, b, c be the side lengths of the reference triangle △ABC. An (f, g)-central triangle of Type 1 is a triangle △A'B'C' the trilinear coordinates of whose vertices have the following form: A = f ( a , b , c ) : g ( b , c , a ) : g ( c , a , b ) B = g ( a , b , c ) : f ( b , c , a ) : g ( c , a , b ) C = g ( a , b , c ) : g ( b , c , a ) : f ( c , a , b ) {\displaystyle {\begin{array}{rcccccc}A'=&f(a,b,c)&:&g(b,c,a)&:&g(c,a,b)\\B'=&g(a,b,c)&:&f(b,c,a)&:&g(c,a,b)\\C'=&g(a,b,c)&:&g(b,c,a)&:&f(c,a,b)\end{array}}}

Central triangles of Type 2

Let ⁠ f ( u , v , w ) {\displaystyle f(u,v,w)} ⁠ be a triangle center function and ⁠ g ( u , v , w ) {\displaystyle g(u,v,w)} ⁠ be a function function satisfying the homogeneity property and having the same degree of homogeneity as ⁠ f ( u , v , w ) {\displaystyle f(u,v,w)} ⁠ but not satisfying the bisymmetry property. An (f, g)-central triangle of Type 2 is a triangle △A'B'C' the trilinear coordinates of whose vertices have the following form: A = f ( a , b , c ) : g ( b , c , a ) : g ( c , b , a ) B = g ( a , c , b ) : f ( b , c , a ) : g ( c , a , b ) C = g ( a , b , c ) : g ( b , a , c ) : f ( c , a , b ) {\displaystyle {\begin{array}{rcccccc}A'=&f(a,b,c)&:&g(b,c,a)&:&g(c,b,a)\\B'=&g(a,c,b)&:&f(b,c,a)&:&g(c,a,b)\\C'=&g(a,b,c)&:&g(b,a,c)&:&f(c,a,b)\end{array}}}

Central triangles of Type 3

Let ⁠ g ( u , v , w ) {\displaystyle g(u,v,w)} ⁠ be a triangle center function. An g-central triangle of Type 3 is a triangle △A'B'C' the trilinear coordinates of whose vertices have the following form: A = 0     : g ( b , c , a ) : g ( c , b , a ) B = g ( a , c , b ) : 0     : g ( c , a , b ) C = g ( a , b , c ) : g ( b , a , c ) : 0     {\displaystyle {\begin{array}{rrcrcr}A'=&0\quad \ \ &:&g(b,c,a)&:&-g(c,b,a)\\B'=&-g(a,c,b)&:&0\quad \ \ &:&g(c,a,b)\\C'=&g(a,b,c)&:&-g(b,a,c)&:&0\quad \ \ \end{array}}}

This is a degenerate triangle in the sense that the points A', B', C' are collinear.

Special cases

If f = g, the (f, g)-central triangle of Type 1 degenerates to the triangle center A'. All central triangles of both Type 1 and Type 2 relative to an equilateral triangle degenerate to a point.

Examples

Type 1

  • The excentral triangle of triangle △ABC is a central triangle of Type 1. This is obtained by taking f ( u , v , w ) = 1 ,   g ( u , v , w ) = 1. {\displaystyle f(u,v,w)=-1,\ g(u,v,w)=1.}
  • Let X be a triangle center defined by the triangle center function ⁠ g ( a , b , c ) . {\displaystyle g(a,b,c).} ⁠ Then the cevian triangle of X is a (0, g)-central triangle of Type 1.
  • Let X be a triangle center defined by the triangle center function ⁠ f ( a , b , c ) . {\displaystyle f(a,b,c).} ⁠ Then the anticevian triangle of X is a (−f, f)-central triangle of Type 1.
  • The Lucas central triangle is the (f, g)-central triangle with f ( a , b , c ) = a ( 2 S + S 2 ) , g ( a , b , c ) = a S A , {\displaystyle f(a,b,c)=a(2S+S_{2}),\quad g(a,b,c)=aS_{A},} where S is twice the area of triangle ABC and S A = 1 2 ( b 2 + c 2 a 2 ) . {\displaystyle S_{A}={\tfrac {1}{2}}(b^{2}+c^{2}-a^{2}).}

Type 2

References

  1. ^ Weisstein, Eric W. "Central Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 17 December 2021.
  2. Kimberling, C (1998). "Triangle Centers and Central Triangles". Congressus Numerantium. A Conference Journal on Numerical Themes. 129. 129.
  3. Weisstein, Eric W. "Cevian Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  4. Weisstein, Eric W. "Anticevian Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  5. Weisstein, Eric W. "Lucas Central Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  6. Weisstein, Eric W. "Pedal Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
  7. Weisstein, Eric W. "Yff Central Triangle". MathWorld--A Wolfram Web Resource. MathWorld. Retrieved 18 December 2021.
Category: