Misplaced Pages

CheMin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
CheMin
Sample inlet of CheMin analyzer
OperatorNASA
ManufacturerAmes Research Center
Instrument typeX-ray diffraction
FunctionSurface composition
Mission durationNovember 26, 2011 – present
Began operations17 October 2012
Host spacecraft
SpacecraftCuriosity rover
OperatorNASA
Launch date26 November 2011
RocketAtlas V 541 (AV-028)
Launch siteCape Canaveral LC-41
COSPAR ID2011-070A

CheMin, short for Chemistry and Mineralogy, is an instrument located in the interior of the Curiosity rover that is exploring the surface of Gale crater on Mars. David Blake, from NASA Ames Research Center, is the Principal Investigator.

CheMin identifies and quantifies the minerals present in rocks and soil delivered to it by the rover's robotic arm. By determining the mineralogy in rocks and soils, CheMin assesses the involvement of water in their formation, deposition, or alteration. In addition, CheMin data is useful in the search for potential mineral biosignatures, energy sources for life or indicators for past habitable environments.

CheMin aboard the Curiosity rover on Mars won the 2013 NASA Government Invention of the year award.

Description

On public display in downtown Mountain View, California, as part of NASA Ames' 75th anniversary.
First X-ray diffraction view of the Martian soil – CheMin analysis reveals feldspar, pyroxenes, olivine and more (Curiosity rover, "Rocknest", October 17, 2012).

CheMin is an X-ray powder diffraction instrument that also has X-ray fluorescence capabilities. CheMin does not require the use of liquid reagents, instead, it utilizes a microfocus cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray-sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and energy-dispersive histograms from powdered samples. Raw CCD frames are processed into data products on board the rover to reduce the data volume. These data products are transmitted to Earth for further processing analyses.

In operation, the collimated X-ray source produces and directs a beam through a transmission sample cell containing powdered material. A CCD (charge-coupled device) imager is positioned on the opposite side of the sample from the source and directly detects X-rays diffracted or fluoresced by the sample. The CCD can measure the charge generated by each photon, and hence its energy. Diffracted X-rays strike the detector and are identified by their energy, producing a two-dimensional image that constitutes the diffraction pattern of the sample. Both crystalline and amorphous materials can be analyzed in this fashion.

A maximum of 65 mm of sample material is delivered to a vibrated funnel system that penetrates the rover deck, although only about 10 mm of material is required to fill the sample cell which is transparent with a disc-shaped volume, with an 8 mm diameter and 175 μm thickness. The funnel contains a 1 mm mesh screen to limit the particle size. Five permanent cells are loaded with calibration standards; these are single minerals or synthetic ceramic. Each analysis may take up to 10 hours, spread out over two or more Martian nights.

Features

  • Capacity: CheMin is planned to analyze as many as 74 dry samples, but it is capable of analyzing many more because its sample cells can be emptied and reused for additional analyses. Cross-contamination by cell reuse is expected to be less than 5%. CheMin does not have the capability to store previously analyzed samples for later reanalysis.
  • Detection limits: able to detect individual minerals that are present at the 3% level and above.
  • Accuracy: for minerals that are present in concentrations of 12% and above, CheMin is able to state the absolute amount present ± 1.5%
  • Precision: 10%

Timeline

On October 17, 2012 at "Rocknest", the first X-ray diffraction analysis of Martian soil was performed. The results revealed the presence of several minerals, including feldspar, pyroxenes and olivine, and suggested that the Martian soil in the sample was similar to the "weathered basaltic soils" of Hawaiian volcanoes. The paragenetic tephra from a Hawaiian cinder cone has been mined to create Martian regolith simulant for researchers to use since 1998.

Typical results

Curiosity rover – Mudstone Mineralogy – 2013 to 2016 on Mars (CheMin; December 13, 2016)

See also

References

  1. ^ NASA Ames Research Center, David Blake (2011). "MSL Science Corner – Chemistry & Mineralogy (CheMin)". Archived from the original on 2009-03-20. Retrieved 2012-08-24.
  2. ^ The MSL Project Science Office (December 14, 2010). "Mars Science Laboratory Participating Scientists Program – Proposal Information Package" (PDF). JPL – NASA. Washington University. Retrieved 2012-08-24.
  3. Sarrazin, P.; Blake D.; Feldman S.; Chipera S.; Vaniman D.; Bish D. "FIELD DEPLOYMENT OF A PORTABLE XRD/XRF INSTRUMENT ON MARS ANALOG TERRAIN" (PDF). Advances in X-ray Analysis. 48. Archived from the original (PDF) on 2013-05-12. Retrieved 2012-08-24. International Centre for Diffraction Data 2005
  4. Hoover, Rachel (June 24, 2014). "Ames Instrument Helps Identify the First Habitable Environment on Mars, Wins Invention Award". NASA. Archived from the original on August 18, 2016. Retrieved June 25, 2014.
  5. ^ Brown, Dwayne (October 30, 2012). "NASA Rover's First Soil Studies Help Fingerprint Martian Minerals". NASA. Archived from the original on June 3, 2016. Retrieved October 31, 2012.
  6. L. W. Beegle; G. H. Peters; G. S. Mungas; G. H. Bearman; J. A. Smith; R. C. Anderson (2007). Mojave Martian Simulant: A New Martian Soil Simulant (PDF). Lunar and Planetary Institute. Retrieved 28 April 2014.
  7. Allen, C. C.; Morris, R. V.; Lindstrom, D. J.; Lindstrom, M. M.; Lockwood, J. P. (March 1997). JSC Mars-1: Martian regolith simulant (PDF). Lunar and Planetary Institute. Retrieved 17 March 2021.
  8. Staff (December 13, 2016). "PIA21146: Mudstone Mineralogy from Curiosity's CheMin, 2013 to 2016". NASA. Retrieved December 16, 2016.

External links

Mars Science Laboratory
General
Instruments
Features
Sites
Rocks
Related
Mars
Outline of Mars
Geography
Atmosphere
Regions
Physical
features
Geology
History
Astronomy
Moons
Transits
Asteroids
Comets
General
Exploration
Concepts
Missions
Advocacy
Related
Science instruments on satellites and spacecraft
Radar
Radio science
Radiometer
Microwave
Near-Earth
Interplanetary
Infrared-visible
Near-Earth
Interplanetary
Ultraviolet (UV)
Near-Earth
Spectrophotometers
Long wavelength
Interplanetary
Visible-IR (VIRS)
Near-Earth
Interplanetary
UV-visible (UVVS)
Interplanetary
Raman
Interplanetary
Magnetometer
Near-Earth
Interplanetary
Triaxial fluxgate
Near-Earth
Interplanetary
Helium vapor
Near-Earth
Interplanetary
Particle
detectors
Ion detectors
Near-Earth
Interplanetary
Neutral particle detector
Interplanetary
Mass spectrometer
Interplanetary
  • MASPEX (Europa Clipper)
  • MOMA (Rosalind Franklin rover)
Seismometers
Imagers/telescopes
Microscopes
Astronomical
instruments
Misc
Categories: