Misplaced Pages

Chow–Rashevskii theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
On horizontal paths in a sub-Riemannian manifold

In sub-Riemannian geometry, the Chow–Rashevskii theorem (also known as Chow's theorem) asserts that any two points of a connected sub-Riemannian manifold, endowed with a bracket generating distribution, are connected by a horizontal path in the manifold. It is named after Wei-Liang Chow who proved it in 1939, and Petr Konstanovich Rashevskii, who proved it independently in 1938.

The theorem has a number of equivalent statements, one of which is that the topology induced by the Carnot–Carathéodory metric is equivalent to the intrinsic (locally Euclidean) topology of the manifold. A stronger statement that implies the theorem is the ball–box theorem. See, for instance, Montgomery (2006) and Gromov (1996).

See also

References

  • Chow, W.L. (1939), "Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung", Mathematische Annalen, 117: 98–105, doi:10.1007/bf01450011, S2CID 121523670
  • Gromov, M. (1996), "Carnot-Carathéodory spaces seen from within" (PDF), in A. Bellaiche (ed.), Proc. Journées nonholonomes: géométrie sous-riemannienne, théorie du contrôle, robotique, Paris, France, June 30--July 1, 1992., Prog. Math., vol. 144, Birkhäuser, Basel, pp. 79–323, archived from the original (PDF) on September 27, 2011, retrieved January 27, 2013
  • Montgomery, R. (2006), A tour of sub-Riemannian geometries: their geodesics and applications, American Mathematical Society, ISBN 978-0821841655
  • Rashevskii, P.K. (1938), "About connecting two points of complete non-holonomic space by admissible curve (in Russian)", Uch. Zapiski Ped. Inst. Libknexta (2): 83–94


Stub icon

This differential geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: