Misplaced Pages

Christoffel–Darboux formula

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Christoffel–Darboux identity)

In mathematics, the Christoffel–Darboux formula or Christoffel–Darboux theorem is an identity for a sequence of orthogonal polynomials, introduced by Elwin Bruno Christoffel (1858) and Jean Gaston Darboux (1878). It states that

j = 0 n f j ( x ) f j ( y ) h j = k n h n k n + 1 f n ( y ) f n + 1 ( x ) f n + 1 ( y ) f n ( x ) x y {\displaystyle \sum _{j=0}^{n}{\frac {f_{j}(x)f_{j}(y)}{h_{j}}}={\frac {k_{n}}{h_{n}k_{n+1}}}{\frac {f_{n}(y)f_{n+1}(x)-f_{n+1}(y)f_{n}(x)}{x-y}}}

where fj(x) is the jth term of a set of orthogonal polynomials of squared norm hj and leading coefficient kj.

There is also a "confluent form" of this identity by taking y x {\displaystyle y\to x} limit: j = 0 n f j 2 ( x ) h j = k n h n k n + 1 [ f n + 1 ( x ) f n ( x ) f n ( x ) f n + 1 ( x ) ] . {\displaystyle \sum _{j=0}^{n}{\frac {f_{j}^{2}(x)}{h_{j}}}={\frac {k_{n}}{h_{n}k_{n+1}}}\left.}

Proof

Let p n {\displaystyle p_{n}} be a sequence of polynomials orthonormal with respect to a probability measure μ {\displaystyle \mu } , and define a n = x p n , p n + 1 , b n = x p n , p n , n 0 {\displaystyle a_{n}=\langle xp_{n},p_{n+1}\rangle ,\qquad b_{n}=\langle xp_{n},p_{n}\rangle ,\qquad n\geq 0} (they are called the "Jacobi parameters"), then we have the three-term recurrence p 0 ( x ) = 1 , p 1 ( x ) = x b 0 a 0 , x p n ( x ) = a n p n + 1 ( x ) + b n p n ( x ) + a n 1 p n 1 ( x ) , n 1 {\displaystyle {\begin{array}{l l}{p_{0}(x)=1,\qquad p_{1}(x)={\frac {x-b_{0}}{a_{0}}},}\\{xp_{n}(x)=a_{n}p_{n+1}(x)+b_{n}p_{n}(x)+a_{n-1}p_{n-1}(x),\qquad n\geq 1}\end{array}}}

Proof: By definition, x p n , p k = p n , x p k {\displaystyle \langle xp_{n},p_{k}\rangle =\langle p_{n},xp_{k}\rangle } , so if k n 2 {\displaystyle k\leq n-2} , then x p k {\displaystyle xp_{k}} is a linear combination of p 0 , . . . , p n 1 {\displaystyle p_{0},...,p_{n-1}} , and thus x p n , p k = 0 {\displaystyle \langle xp_{n},p_{k}\rangle =0} . So, to construct p n + 1 {\displaystyle p_{n+1}} , it suffices to perform Gram-Schmidt process on x p n {\displaystyle xp_{n}} using p n , p n 1 {\displaystyle p_{n},p_{n-1}} , which yields the desired recurrence.


Proof of Christoffel–Darboux formula:

Since both sides are unchanged by multiplying with a constant, we can scale each f n {\displaystyle f_{n}} to p n {\displaystyle p_{n}} .

Since k n + 1 k n x p n p n + 1 {\displaystyle {\frac {k_{n+1}}{k_{n}}}xp_{n}-p_{n+1}} is a degree n {\displaystyle n} polynomial, it is perpendicular to p n + 1 {\displaystyle p_{n+1}} , and so k n + 1 k n x p n , p n + 1 = p n + 1 , p n + 1 = 1 {\displaystyle \langle {\frac {k_{n+1}}{k_{n}}}xp_{n},p_{n+1}\rangle =\langle p_{n+1},p_{n+1}\rangle =1} . Now the Christoffel-Darboux formula is proved by induction, using the three-term recurrence.

Specific cases

Hermite polynomials:

k = 0 n H k ( x ) H k ( y ) k ! 2 k = 1 n ! 2 n + 1 H n ( y ) H n + 1 ( x ) H n ( x ) H n + 1 ( y ) x y . {\displaystyle \sum _{k=0}^{n}{\frac {H_{k}(x)H_{k}(y)}{k!2^{k}}}={\frac {1}{n!2^{n+1}}}\,{\frac {H_{n}(y)H_{n+1}(x)-H_{n}(x)H_{n+1}(y)}{x-y}}.} k = 0 n H e k ( x ) H e k ( y ) k ! = 1 n ! H e n ( y ) H e n + 1 ( x ) H e n ( x ) H e n + 1 ( y ) x y . {\displaystyle \sum _{k=0}^{n}{\frac {He_{k}(x)He_{k}(y)}{k!}}={\frac {1}{n!}}\,{\frac {He_{n}(y)He_{n+1}(x)-He_{n}(x)He_{n+1}(y)}{x-y}}.}

Associated Legendre polynomials:

( μ μ ) l = m L ( 2 l + 1 ) ( l m ) ! ( l + m ) ! P l m ( μ ) P l m ( μ ) = ( L m + 1 ) ! ( L + m ) ! [ P L + 1 m ( μ ) P L m ( μ ) P L m ( μ ) P L + 1 m ( μ ) ] . {\displaystyle {\begin{aligned}(\mu -\mu ')\sum _{l=m}^{L}\,(2l+1){\frac {(l-m)!}{(l+m)!}}\,P_{lm}(\mu )P_{lm}(\mu ')=\qquad \qquad \qquad \qquad \qquad \\{\frac {(L-m+1)!}{(L+m)!}}{\big }.\end{aligned}}}

See also

References

  1. Świderski, Grzegorz; Trojan, Bartosz (2021-08-01). "Asymptotic Behaviour of Christoffel–Darboux Kernel Via Three-Term Recurrence Relation I". Constructive Approximation. 54 (1): 49–116. arXiv:1909.09107. doi:10.1007/s00365-020-09519-w. ISSN 1432-0940. S2CID 202677666.


Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: