Misplaced Pages

Circle packing in a circle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Two-dimensional packing problem

Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.

Table of solutions, 1 ≤ n ≤ 20

If more than one optimal solution exists, all are shown.

n {\displaystyle n} Enclosing circle radius
r {\displaystyle r}
Density
n / r 2 {\displaystyle n\!/r^{2}}
Optimality Layout(s) of the
n {\displaystyle n} circles
1 1 1.0000... Trivially optimal.
2 2 0.5000... Trivially optimal.
3 2.155...
 
1 + 2 3 {\displaystyle 1+{\frac {2}{\sqrt {3}}}}
0.6466... Trivially optimal.
4 2.414...
 
1 + 2 {\displaystyle 1+{\sqrt {2}}}
0.6864... Trivially optimal.
5 2.701...
 
1 + 2 ( 1 + 1 5 ) {\displaystyle 1+{\sqrt {2\left(1+{\frac {1}{\sqrt {5}}}\right)}}}
0.6854... Proved optimal by Graham
(1968)
6 3 0.6666... Proved optimal by Graham
(1968)
7 3 0.7777... Trivially optimal.
8 3.304...
 
1 + 1 sin π 7 {\displaystyle 1+{\frac {1}{\sin {\frac {\pi }{7}}}}}
0.7328... Proved optimal by Pirl
(1969)
9 3.613...
 
1 + 2 ( 2 + 2 ) {\displaystyle 1+{\sqrt {2\left(2+{\sqrt {2}}\right)}}}
0.6895... Proved optimal by Pirl
(1969)
10 3.813... 0.6878... Proved optimal by Pirl
(1969)
11 3.923...
 
1 + 1 sin π 9 {\displaystyle 1+{\frac {1}{\sin {\frac {\pi }{9}}}}}
0.7148... Proved optimal by Melissen
(1994)
12 4.029... 0.7392... Proved optimal by Fodor
(2000)
13 4.236...
 
2 + 5 {\displaystyle 2+{\sqrt {5}}}
0.7245... Proved optimal by Fodor
(2003)
14 4.328... 0.7474... Proved optimal by Ekanayake and LaFountain
(2024).
15 4.521...
 
1 + 6 + 2 5 + 4 1 + 2 5 {\displaystyle 1\!+\!{\sqrt {6\!+\!{\frac {2}{\sqrt {5}}}\!+\!4{\sqrt {1\!+\!{\frac {2}{\sqrt {5}}}}}}}}
0.7339... Conjectured optimal by Pirl
(1969).
16 4.615... 0.7512... Conjectured optimal by Goldberg
(1971).
17 4.792... 0.7403... Conjectured optimal by Reis
(1975).
18 4.863...
 
1 + 2 + 6 {\displaystyle 1+{\sqrt {2}}+{\sqrt {6}}}
0.7609... Conjectured optimal by Pirl (1969),
with additional arrangements by Graham, Lubachevsky, Nurmela, and Östergård (1998).
19 4.863...
 
1 + 2 + 6 {\displaystyle 1+{\sqrt {2}}+{\sqrt {6}}}
0.8032... Proved optimal by Fodor
(1999)
20 5.122... 0.7623... Conjectured optimal by Goldberg (1971).

Special cases

Only 26 optimal packings are thought to be rigid (with no circles able to "rattle"). Numbers in bold are prime:

  • Proven for n = 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 19
  • Conjectured for n = 15, 16, 17, 18, 22, 23, 27, 30, 31, 33, 37, 61, 91

Of these, solutions for n = 2, 3, 4, 7, 19, and 37 achieve a packing density greater than any smaller number > 1. (Higher density records all have rattles.)

See also

References

  1. Friedman, Erich, "Circles in Circles", Erich's Packing Center, archived from the original on 2020-03-18
  2. ^ R.L. Graham, Sets of points with given minimum separation (Solution to Problem El921), Amer. Math. Monthly 75 (1968) 192-193.
  3. ^ U. Pirl, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten, Mathematische Nachrichten 40 (1969) 111-124.
  4. H. Melissen, Densest packing of eleven congruent circles in a circle, Geometriae Dedicata 50 (1994) 15-25.
  5. F. Fodor, The Densest Packing of 12 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 41 (2000) ?, 401–409.
  6. F. Fodor, The Densest Packing of 13 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 44 (2003) 2, 431–440.
  7. Ekanayake, Dinesh; LaFountain, Douglas. "Tight partitions for packing circles in a circle" (PDF). Italian Journal of Pure and Applied Mathematics. 51: 115–136.
  8. ^ Graham RL, Lubachevsky BD, Nurmela KJ, Ostergard PRJ. Dense packings of congruent circles in a circle. Discrete Math 1998;181:139–154.
  9. F. Fodor, The Densest Packing of 19 Congruent Circles in a Circle, Geom. Dedicata 74 (1999), 139–145.
  10. Sloane, N. J. A. (ed.). "Sequence A084644". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

External links


Packing problems
Abstract packing
Circle packing
Sphere packing
Other 2-D packing
Other 3-D packing
Puzzles


Stub icon

This elementary geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: