Misplaced Pages

Coherent algebra

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Algebra of complex square matrices
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Coherent algebra" – news · newspapers · books · scholar · JSTOR (September 2017) (Learn how and when to remove this message)

A coherent algebra is an algebra of complex square matrices that is closed under ordinary matrix multiplication, Schur product, transposition, and contains both the identity matrix I {\displaystyle I} and the all-ones matrix J {\displaystyle J} .

Definitions

A subspace A {\displaystyle {\mathcal {A}}} of M a t n × n ( C ) {\displaystyle \mathrm {Mat} _{n\times n}(\mathbb {C} )} is said to be a coherent algebra of order n {\displaystyle n} if:

  • I , J A {\displaystyle I,J\in {\mathcal {A}}} .
  • M T A {\displaystyle M^{T}\in {\mathcal {A}}} for all M A {\displaystyle M\in {\mathcal {A}}} .
  • M N A {\displaystyle MN\in {\mathcal {A}}} and M N A {\displaystyle M\circ N\in {\mathcal {A}}} for all M , N A {\displaystyle M,N\in {\mathcal {A}}} .

A coherent algebra A {\displaystyle {\mathcal {A}}} is said to be:

  • Homogeneous if every matrix in A {\displaystyle {\mathcal {A}}} has a constant diagonal.
  • Commutative if A {\displaystyle {\mathcal {A}}} is commutative with respect to ordinary matrix multiplication.
  • Symmetric if every matrix in A {\displaystyle {\mathcal {A}}} is symmetric.

The set Γ ( A ) {\displaystyle \Gamma ({\mathcal {A}})} of Schur-primitive matrices in a coherent algebra A {\displaystyle {\mathcal {A}}} is defined as Γ ( A ) := { M A : M M = M , M N span { M }  for all  N A } {\displaystyle \Gamma ({\mathcal {A}}):=\{M\in {\mathcal {A}}:M\circ M=M,M\circ N\in \operatorname {span} \{M\}{\text{ for all }}N\in {\mathcal {A}}\}} .

Dually, the set Λ ( A ) {\displaystyle \Lambda ({\mathcal {A}})} of primitive matrices in a coherent algebra A {\displaystyle {\mathcal {A}}} is defined as Λ ( A ) := { M A : M 2 = M , M N span { M }  for all  N A } {\displaystyle \Lambda ({\mathcal {A}}):=\{M\in {\mathcal {A}}:M^{2}=M,MN\in \operatorname {span} \{M\}{\text{ for all }}N\in {\mathcal {A}}\}} .

Examples

  • The centralizer of a group of permutation matrices is a coherent algebra, i.e. W {\displaystyle {\mathcal {W}}} is a coherent algebra of order n {\displaystyle n} if W := { M M a t n × n ( C ) : M P = P M  for all  P S } {\displaystyle {\mathcal {W}}:=\{M\in \mathrm {Mat} _{n\times n}(\mathbb {C} ):MP=PM{\text{ for all }}P\in S\}} for a group S {\displaystyle S} of n × n {\displaystyle n\times n} permutation matrices. Additionally, the centralizer of the group of permutation matrices representing the automorphism group of a graph G {\displaystyle G} is homogeneous if and only if G {\displaystyle G} is vertex-transitive.
  • The span of the set of matrices relating pairs of elements lying in the same orbit of a diagonal action of a finite group on a finite set is a coherent algebra, i.e. W := span { A ( u , v ) : u , v V } {\displaystyle {\mathcal {W}}:=\operatorname {span} \{A(u,v):u,v\in V\}} where A ( u , v ) Mat V × V ( C ) {\displaystyle A(u,v)\in \operatorname {Mat} _{V\times V}(\mathbb {C} )} is defined as ( A ( u , v ) ) x , y := { 1   if  ( x , y ) = ( u g , v g )  for some  g G 0  otherwise  {\displaystyle (A(u,v))_{x,y}:={\begin{cases}1\ {\text{if }}(x,y)=(u^{g},v^{g}){\text{ for some }}g\in G\\0{\text{ otherwise }}\end{cases}}} for all u , v V {\displaystyle u,v\in V} of a finite set V {\displaystyle V} acted on by a finite group G {\displaystyle G} .
  • The span of a regular representation of a finite group as a group of permutation matrices over C {\displaystyle \mathbb {C} } is a coherent algebra.

Properties

  • The intersection of a set of coherent algebras of order n {\displaystyle n} is a coherent algebra.
  • The tensor product of coherent algebras is a coherent algebra, i.e. A B := { M N : M A  and  N B } {\displaystyle {\mathcal {A}}\otimes {\mathcal {B}}:=\{M\otimes N:M\in {\mathcal {A}}{\text{ and }}N\in {\mathcal {B}}\}} if A Mat m × m ( C ) {\displaystyle {\mathcal {A}}\in \operatorname {Mat} _{m\times m}(\mathbb {C} )} and B M a t n × n ( C ) {\displaystyle {\mathcal {B}}\in \mathrm {Mat} _{n\times n}(\mathbb {C} )} are coherent algebras.
  • The symmetrization A ^ := span { M + M T : M A } {\displaystyle {\widehat {\mathcal {A}}}:=\operatorname {span} \{M+M^{T}:M\in {\mathcal {A}}\}} of a commutative coherent algebra A {\displaystyle {\mathcal {A}}} is a coherent algebra.
  • If A {\displaystyle {\mathcal {A}}} is a coherent algebra, then M T Γ ( A ) {\displaystyle M^{T}\in \Gamma ({\mathcal {A}})} for all M A {\displaystyle M\in {\mathcal {A}}} , A = span ( Γ ( A ) ) {\displaystyle {\mathcal {A}}=\operatorname {span} \left(\Gamma ({\mathcal {A}}\right))} , and I Γ ( A ) {\displaystyle I\in \Gamma ({\mathcal {A}})} if A {\displaystyle {\mathcal {A}}} is homogeneous.
  • Dually, if A {\displaystyle {\mathcal {A}}} is a commutative coherent algebra (of order n {\displaystyle n} ), then E T , E Λ ( A ) {\displaystyle E^{T},E^{*}\in \Lambda ({\mathcal {A}})} for all E A {\displaystyle E\in {\mathcal {A}}} , 1 n J Λ ( A ) {\displaystyle {\frac {1}{n}}J\in \Lambda ({\mathcal {A}})} , and A = span ( Λ ( A ) ) {\displaystyle {\mathcal {A}}=\operatorname {span} \left(\Lambda ({\mathcal {A}}\right))} as well.
  • Every symmetric coherent algebra is commutative, and every commutative coherent algebra is homogeneous.
  • A coherent algebra is commutative if and only if it is the Bose–Mesner algebra of a (commutative) association scheme.
  • A coherent algebra forms a principal ideal ring under Schur product; moreover, a commutative coherent algebra forms a principal ideal ring under ordinary matrix multiplication as well.

See also

References

  1. ^ Godsil, Chris (2010). "Association Schemes" (PDF).
  2. Godsil, Chris (2011-01-26). "Periodic Graphs". The Electronic Journal of Combinatorics. 18 (1): P23. arXiv:0806.2074. ISSN 1077-8926.
Categories: