Misplaced Pages

Continuous spin particle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Theoretical massless elementary particle

In theoretical physics, a continuous spin particle (CSP), sometimes called an infinite spin particle, is a massless particle never observed before in nature. This particle is one of Poincaré group's massless representations which, along with ordinary massless particles, was classified by Eugene Wigner in 1939. Historically, a compatible theory that could describe this elementary particle was unknown; however, 75 years after Wigner's classification, the first local action principle for bosonic continuous spin particles was introduced in 2014, and the first local action principle for fermionic continuous spin particles was suggested in 2015. It has been illustrated that this particle can interact with matter in flat spacetime. Supersymmetric continuous spin gauge theory has been studied in three and four spacetime dimensions.

In condensed matter systems, CSPs can be understood as massless generalizations of the anyon.

References

  1. Wigner, E. (1939). "On Unitary Representations of the Inhomogeneous Lorentz Group". Annals of Mathematics. 40 (1): 149–204. Bibcode:1939AnMat..40..149W. doi:10.2307/1968551. ISSN 0003-486X. JSTOR 1968551.
  2. Schuster, Philip; Toro, Natalia (23 January 2015). "Continuous-spin particle field theory with helicity correspondence". Physical Review D. 91 (2): 025023. Bibcode:2015PhRvD..91b5023S. doi:10.1103/PhysRevD.91.025023.
  3. Bekaert, Xavier; Najafizadeh, Mojtaba; Setare, M.R. (10 September 2016). "A gauge field theory of fermionic continuous-spin particles". Physics Letters B. 760: 320–323. arXiv:1506.00973. Bibcode:2016PhLB..760..320B. doi:10.1016/j.physletb.2016.07.005. ISSN 0370-2693. S2CID 119120293.
  4. Metsaev, R. R. (29 November 2017). "Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields". Journal of High Energy Physics. 2017 (11): 197. arXiv:1709.08596. Bibcode:2017JHEP...11..197M. doi:10.1007/JHEP11(2017)197. ISSN 1029-8479. S2CID 119208687.
  5. Bekaert, Xavier; Mourad, Jihad; Najafizadeh, Mojtaba (20 November 2017). "Continuous-spin field propagator and interaction with matter". Journal of High Energy Physics. 2017 (11): 113. arXiv:1710.05788. Bibcode:2017JHEP...11..113B. doi:10.1007/JHEP11(2017)113. ISSN 1029-8479. S2CID 119482451.
  6. Zinoviev, Yurii M. (2017). "Infinite Spin Fields in d = 3 and Beyond". Universe. 3 (3): 63. arXiv:1707.08832. Bibcode:2017Univ....3...63Z. doi:10.3390/universe3030063. S2CID 2442288.
  7. Buchbinder, I.L.; Khabarov, M.V.; Snegirev, T.V.; Zinoviev, Yu.M. (1 September 2019). "Lagrangian formulation for the infinite spin N = 1 supermultiplets in d = 4". Nuclear Physics B. 946: 114717. arXiv:1904.05580. Bibcode:2019NuPhB.94614717B. doi:10.1016/j.nuclphysb.2019.114717. ISSN 0550-3213. S2CID 118982636.
  8. Najafizadeh, Mojtaba (4 March 2020). "Supersymmetric continuous spin gauge theory". Journal of High Energy Physics. 2020 (3): 27. arXiv:1912.12310. Bibcode:2020JHEP...03..027N. doi:10.1007/JHEP03(2020)027. ISSN 1029-8479. S2CID 209515928.
  9. Schuster, Philip; Toro, Natalia (April 2015). "A new class of particle in 2 + 1 dimensions". Physics Letters B. 743: 224–227. arXiv:1404.1076. Bibcode:2015PhLB..743..224S. doi:10.1016/j.physletb.2015.02.050.
Stub icon

This particle physics–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: