Misplaced Pages

Joystick

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Control stick) Control lever used in aircraft and video games "Control stick" redirects here. For the joystick often called a control stick in many controllers, see Analog stick. For other uses, see Joystick (disambiguation).
Possible elements of a video game joystick: 1. stick, 2. base, 3. trigger, 4. extra buttons, 5. autofire switch, 6. throttle, 7. hat switch (POV hat), 8. suction cups.

A joystick, sometimes called a flight stick, is an input device consisting of a stick that pivots on a base and reports its angle or direction to the device it is controlling. Also known as the control column, it is the principal control device in the cockpit of many civilian and military aircraft, either as a centre stick or side-stick. It has various switches to control functions of the aircraft controlled by the Pilot and First Officer of the flight.

Joysticks are often used to control video games, and usually have push-buttons whose state can be read by the computer. A popular variation of the joystick used on modern video game consoles is the analog stick. Joysticks are also used for controlling machines such as cranes, trucks, underwater unmanned vehicles, wheelchairs, surveillance cameras, and zero turning radius lawn mowers. Miniature finger-operated joysticks have been adopted as input devices for smaller electronic equipment such as mobile phones.

Aviation

Cockpit of a glider with its joystick visible

Joysticks originated as controls for aircraft ailerons and elevators, and are first known to have been used as such on Louis Bleriot's Bleriot VIII aircraft of 1908, in combination with a foot-operated rudder bar for the yaw control surface on the tail.

Origins

The name joystick is thought to originate with early 20th century French pilot Robert Esnault-Pelterie. There are also competing claims on behalf of fellow pilots Robert Loraine, James Henry Joyce, and A. E. George. Loraine is cited by the Oxford English Dictionary for using the term "joystick" in his diary in 1909 when he went to Pau to learn to fly at Blériot's school. George was a pioneer aviator who with his colleague Jobling built and flew a biplane at Newcastle in England in 1910. The George and Jobling aircraft control column is in the collection of the Discovery Museum in Newcastle upon Tyne, England. Joysticks were present in early planes, though their mechanical origins are uncertain. The coining of the term "joystick" may actually be credited to Loraine, as his is the earliest known usage of the term, although he most certainly did not invent the device.

Electronic joysticks

History

The electrical two-axis joystick was invented by C. B. Mirick at the United States Naval Research Laboratory (NRL) and patented in 1926 (U.S. Patent no. 1,597,416)". NRL was actively developing remote controlled aircraft at the time and the joystick was possibly used to support this effort. In the awarded patent, Mirick writes: "My control system is particularly applicable in maneuvering aircraft without a pilot."

The Germans developed an electrical two-axis joystick around 1944. The device was used as part of the Germans' Funkgerät FuG 203 Kehl radio control transmitter system used in certain German bomber aircraft, used to guide both the rocket-boosted anti-ship missile Henschel Hs 293, and the unpowered pioneering precision-guided munition Fritz-X, against maritime and other targets. Here, the joystick of the Kehl transmitter was used by an operator to steer the missile towards its target. This joystick had on-off switches rather than analogue sensors. Both the Hs 293 and Fritz-X used FuG 230 Straßburg radio receivers in them to send the Kehl's control signals to the ordnance's control surfaces. A comparable joystick unit was used for the contemporary American Azon steerable munition, strictly to laterally steer the munition in the yaw axis only.

This German invention was picked up by someone in the team of scientists assembled at the Heeresversuchsanstalt in Peenemünde. Here a part of the team on the German rocket program was developing the Wasserfall missile, a variant of the V-2 rocket, the first ground-to-air missile. The Wasserfall steering equipment converted the electrical signal to radio signals and transmitted these to the missile.

A prototype Project Gemini joystick-type hand controller, 1962

In the 1960s the use of joysticks became widespread in radio-controlled model aircraft systems such as the Kwik Fly produced by Phill Kraft (1964). The now-defunct Kraft Systems firm eventually became an important OEM supplier of joysticks to the computer industry and other users. The first use of joysticks outside the radio-controlled aircraft industry may have been in the control of powered wheelchairs, such as the Permobil (1963). During this time period NASA used joysticks as control devices as part of the Apollo missions. For example, the lunar lander test models were controlled with a joystick.

In many modern airliners, for example all Airbus aircraft developed from the 1980s, the joystick has received a new lease on life for flight control in the form of the "side-stick", a controller similar to a gaming joystick but which is used to control flight, replacing the traditional yoke. The sidestick saves weight, improves movement and visibility in the cockpit, and may be safer in an accident than the yoke.

Electronic games

CH Products Mach II analog joystick for Apple II computers. The small knobs are for (mechanical) calibration, and the sliders engage the self-centering springs.

Ralph H. Baer, inventor of the Magnavox Odyssey console, released in 1972, created the first video game joysticks in 1967. They were able to control the horizontal and vertical position of a spot displayed on a screen. The earliest known electronic game joystick with a fire button was released by Sega as part of their 1969 arcade game Missile, a shooter simulation game that used it as part of an early dual-control scheme, where two directional buttons are used to move a motorized tank and a two-way joystick is used to shoot and steer the missile onto oncoming planes displayed on the screen; when a plane is hit, an explosion is animated on screen along with an explosion sound. In 1970, the game was released in North America as S.A.M.I. by Midway Games.

Taito released a four-way joystick as part of their arcade racing video game Astro Race in 1973, while their 1975 multidirectional shooter Western Gun introduced dual-stick controls with one eight-way joystick for movement and the other for changing the shooting direction. In North America, it was released by Midway under the title Gun Fight. In 1976, Taito released Interceptor, an early first-person combat flight simulator that involved piloting a jet fighter, using an eight-way joystick to aim with a crosshair and shoot at enemy aircraft.

Computer port view of the Atari standard connector: 1. up, 2. down, 3. left, 4. right, 5. (pot y), 6. fire button, 7. +5 V DC, 8. ground, 9. (pot x).

The Atari CX40 joystick, developed for the 1977 Atari Video Computer System, is a digital controller with a single fire button. The Atari joystick port was for many years the de facto standard digital joystick specification. Joysticks were commonly used as controllers in first and second generation game consoles, but they gave way to the familiar game pad with the Nintendo Entertainment System and Master System during the mid-1980s, though joysticks—especially arcade-style ones—were and are popular after-market add-ons for any console.

In 1985, Sega's third-person arcade rail shooter game Space Harrier featured a true analog flight stick, used for movement. The joystick could register movement in any direction as well as measure the degree of push, which could move the player character at different speeds depending on how far the joystick was pushed in a certain direction.

A variation of the joystick is the rotary joystick. It is a type of joystick-knob hybrid, where the joystick can be moved in various direction while at the same time being able to rotate the joystick. It is mainly used in arcade shoot 'em up games, to control both the player's eight-directional movement and the gun's 360-degree direction. It was introduced by SNK, initially with the tank shooter TNK III (1985) before it was popularized by the run and gun video game Ikari Warriors (1986). SNK later used rotary joystick controls in arcade games such as Guerrilla War (1987).

A distinct variation of an analog joystick is a positional gun, which works differently from a light gun. Instead of using light sensors, a positional gun is essentially an analog joystick mounted in a fixed location that records the position of the gun to determine where the player is aiming on the screen. It is often used for arcade gun games, with early examples including Sega's Sea Devil in 1972; Taito's Attack in 1976; Cross Fire in 1977; and Nintendo's Battle Shark in 1978.

Saitek's Cyborg 3D Gold around the 2000s. Note its throttle, its extra buttons, and its hat switch.

During the 1990s, joysticks such as the CH Products Flightstick, Gravis Phoenix, Microsoft SideWinder, Logitech WingMan, and Thrustmaster FCS were in demand with PC gamers. They were considered a prerequisite for flight simulators such as F-16 Fighting Falcon and LHX Attack Chopper. Joysticks became especially popular with the mainstream success of space flight simulator games like X-Wing and Wing Commander, as well as the "Six degrees of freedom" 3D shooter Descent. VirPil Controls' MongoosT-50 joystick was designed to mimic the style of Russian aircraft (including the Sukhoi Su-35 and Sukhoi Su-57), unlike most flight joysticks.

However, since the beginning of the 21st century, these types of games have waned in popularity and are now considered a "dead" genre, and with that, gaming joysticks have been reduced to niche products. In NowGamer's interview with Jim Boone, a producer at Volition Inc., he stated that FreeSpace 2's poor sales could have been due to joysticks' being sold poorly because they were "going out of fashion" because more modern first-person shooters, such as Quake, were "very much about the mouse and keyboard". He went further on to state "Before that, when we did Descent for example, it was perfectly common for people to have joysticks – we sold a lot of copies of Descent. It was around that time the more modern FPS with mouse and keyboard came out, as opposed to just keyboard like Wolfenstein or something.".

Since the late 1990s, analog sticks (or thumbsticks, due to their being controlled by one's thumbs) have become standard on controllers for video game consoles, popularized by Nintendo's Nintendo 64 controller, and have the ability to indicate the stick's displacement from its neutral position. This means that the software does not have to keep track of the position or estimate the speed at which the controls are moved. These devices usually use potentiometers to determine the position of the stick, though some newer models instead use a Hall effect sensor for greater reliability and reduced size.

In 1997, ThrustMaster, Inc. introduced a 3D programmable controller, which was integrated into computer games to experience flight simulations. This line adapted several aspects of NASA's RHC (Rotational Hand Controller), which is used for landing and navigation methods.

In 1997 the first gaming joystick with force feedback (haptics) was manufactured by CH Products under license from technology creator, Immersion Corporation. The product, called the Force FX joystick was followed by force feedback joysticks from Logitech, Thrustmaster, and others, also under license from Immersion.

Arcade sticks

Main article: Arcade controller

An arcade stick is a large-format controller for use with home consoles or computers. They use the stick-and-button configuration of some arcade cabinets, such as those with particular multi-button arrangements. For example, the six button layout of the arcade games Street Fighter II or Mortal Kombat cannot be comfortably emulated on a console joypad, so licensed home arcade sticks for these games have been manufactured for home consoles and PCs.

Hat switch

Hat switch - at top, in green

A hat switch is a control on some joysticks. It is also known as a POV (point of view) switch in electronic games, where it allows one to look around in one's virtual world, browse menus, etc. For example, many flight simulators use it to switch the player's views, while other games sometimes use it as a substitute for the D-pad. Computer gamepads with both an analogue stick and a D-pad usually assign POV switch scancodes to the latter.

The term hat switch is a shortening of the term "coolie hat switch", named for the similar looking headgear.

In a real aircraft, the hat switch may control things like aileron or elevator trim.

Cameras

Apart from buttons, wheels and dials as well as touchscreens also miniature joysticks have been established for the efficient manual operation of cameras.

Industrial applications

In recent times, the employment of joysticks has become commonplace in many industrial and manufacturing applications, such as cranes, assembly lines, forestry equipment, mining trucks, and excavators. In fact, the use of such joysticks is in such high demand, that it has virtually replaced the traditional mechanical control lever in nearly all modern hydraulic control systems. Additionally, most unmanned aerial vehicles (UAVs) and submersible remotely operated vehicles (ROVs) require at least one joystick to control either the vehicle, the on-board cameras, sensors and/or manipulators.

Due to the highly hands-on, rough nature of such applications, the industrial joystick tends to be more robust than the typical video-game controller, and able to function over a high cycle life. This led to the development and employment of Hall effect sensing to such applications in the 1980s as a means of contactless sensing. Several companies produce joysticks for industrial applications using Hall effect technology. Another technology used in joystick design is the use of strain gauges to build force transducers from which the output is proportional to the force applied rather than physical deflection. Miniature force transducers are used as additional controls on joysticks for menu selection functions.

Some larger manufacturers of joysticks are able to customize joystick handles and grips specific to the OEM needs while small regional manufacturers often concentrate on selling standard products at higher prices to smaller OEMs.

Assistive technology

Stephen Hawking

Specialist joysticks, classed as an assistive technology pointing device, are used to replace the computer mouse for people with fairly severe physical disabilities. Rather than controlling games, these joysticks control the pointer. They are often useful to people with athetoid conditions, such as cerebral palsy, who find them easier to grasp than a standard mouse. Miniature joysticks are available for people with conditions involving muscular weakness such as muscular dystrophy or motor neurone disease as well. They are also used on electric powered wheelchairs for control since they are simple and effective to use as a control method.

Non-human use

A joystick designed specifically to be used by pigsA joystick designed specifically to be used by pigsJoystick on the left when in use

In 1996, a scientific study established that both chimpanzees and rhesus monkeys could be taught to move a pointer on a screen by using a joystick. Both have consistently managed to demonstrate "conceptual knowledge" of the task required of them during trials, although rhesus monkeys were notably slower to do so.

In 2021, another pair of researchers investigated the level of intelligence in domestic pigs by designing a joystick which could be controlled with their snout. Unlike the chimpanzees or the rhesus monkeys, none of the four pigs was able to fully meet the 1996's test criteria for "motoric or conceptual acquisition" of the task, but they still performed "significantly above chance". Notably, the pigs experienced additional difficulties in comparison to the primates, as they were all far-sighted and so may have struggled with the details on screen, and they could not move the target with a joystick without taking their eyes off the screen first.

See also

References

  1. AFP (25 July 2009). "English Channel Armada to Mark Centenary of Louis Blériot Flight". Times of Malta. Retrieved 14 September 2015.
  2. Zeller, Tom Jr. (2005-06-05). "A Great Idea That's All in the Wrist". New York Times. Retrieved 2006-09-07.
  3. Quinion, Michael (2004-07-17). "Questions & Answers: Joystick". World Wide Words. Retrieved 2006-09-07.
  4. "A Timeline of NRL's Autonomous Systems Research" (PDF). United States Naval Research Laboratory. 2011. Archived from the original (PDF) on 2015-09-08. Retrieved 2012-10-21.
  5. Mirick, C. B. (1926). "Electrical Distant Control System". United States Patent and Trademark Office. Retrieved 2012-10-21.
  6. USAAF Wright Field Air Technical Service Command, T-2 Intelligence Department (1946). WF 12-105, Captured Film, 'Fritz X' German Radio-Controlled Dive Bomb (YouTube). The Digital Implosion. Event occurs at 13:45 to 15:00. Archived from the original (YouTube) on 2014-01-31. Retrieved July 24, 2013.
  7. United States Office of Strategic Services (1943). WW2: Azon (1943) Radio-Controlled Dive Bomb (YouTube). The Digital Implosion. Archived from the original on 2013-12-05. Retrieved July 21, 2013.
  8. Edwards, Benj (2007-05-15). "Video Games Turn Forty". vintagecomputing.com (originally published at 1UP.com). Retrieved 2019-08-27.
  9. ^ Missile at the Killer List of Videogames
  10. S.A.M.I. at the Killer List of Videogames
  11. Astro Race at the Killer List of Videogames
  12. Stephen Totilo, In Search Of The First Video Game Gun, Kotaku
  13. Interceptor at the Killer List of Videogames
  14. Jamie Rigg (22 June 2012). "Joyride to Joystick: Atari Controller Custom-Built from a Car Seat Adjuster". Engadget. Retrieved 15 September 2015.
  15. Grant Brunner (27 May 2013). "Shoulder Buttons of Giants: The Evolution of Controllers Leading Up to PS4 and Xbox One". ExtremeTech. Retrieved 11 September 2015.
  16. "Masterpiece: The NES Advantage—God's own controller". Ars Technica. Retrieved 2018-10-02.
  17. Space Harrier Retrospective, IGN
  18. ^ "「怒」を作った男" [The Man Who Made "Ikari"]. Continue (in Japanese). March 2001.
  19. "Arcade Action: Tank". Computer and Video Games. No. 52 (February 1986). 16 January 1986. p. 51.
  20. "Bustin' Out: SNK's Beast Busters dedicated video gun game makes its mark". RePlay. Vol. 15, no. 5. February 1990. pp. 61–2.
  21. Morgan McGuire & Odest Chadwicke Jenkins (2009), Creating Games: Mechanics, Content, and Technology, A K Peters, Ltd., p. 408, ISBN 978-1-56881-305-9, retrieved 2011-04-03, Light guns, such as the NES Zapper or those used in the House of the Dead series, are distinctly different from positional guns used by arcade games such as SEGA's Gunblade NY. ... Light guns differ from positional guns, such as in Gunblade NY (bottom), that are essentially analog joysticks. ... Positional guns are essentially analog sticks mounted in a fixed location with respect to the screen. Light guns, in contrast, have no fixed a priori relationship with a display.
  22. Yo-Sung Ho & Hyoung Joong Kim (November 13–16, 2005), Advances in Multimedia Information Processing-PCM 2005: 6th Pacific-Rim Conference on Multimedia, Jeju Island, Korea, Springer Science & Business, p. 688, ISBN 3-540-30040-6, retrieved 2011-04-03, The two routes to conventional gun control are light guns and positional guns. Light guns are the most common for video game systems of any type. They work optically with screen and do not keep track of location on the screen until the gun is fired. When the gun is fired, the screen blanks for a moment, and the optics in the gun register where on the screen the gun is aimed. That information is sent to the computer, which registers the shot. ... Positional guns are mounted stationary on the arcade cabinet with the ability to aim left/right and up/down. They function much like joysticks, which maintain a known location on screen at all times and register the current location when fired.
  23. Sea Devil at the Killer List of Videogames
  24. Attack at the Killer List of Videogames
  25. Cross Fire at the Killer List of Videogames
  26. Battle Shark at the Killer List of Videogames
  27. ^ Peckham, Matt (September 26, 2006). "DarkStar One". SciFi.com. Archived from the original on 17 October 2006. Retrieved 2007-11-17.
  28. ^ "Space Interceptor: Project Freedom". MyGamer. November 9, 2004. Archived from the original on March 10, 2012. Retrieved 2007-11-17.
  29. ^ Weise, Matt (May 28, 2003). "Freelancer". GameCritics. Archived from the original on January 6, 2008. Retrieved 2007-11-17.
  30. ^ LaMosca, Adam (July 18, 2006). "Lost in the Void". The Escapist. Archived from the original on 2008-02-25. Retrieved 2007-11-17.
  31. ^ Wen, Howard (February 12, 2008). "What Happened To The Last Starfighters?". The Escapist. Archived from the original on 2009-02-25. Retrieved 2008-06-20.
  32. Hirsch, Matthew (June 4, 2017). "VPC's MongoosT-50 joystick: A rare Russian-style controller for skies or space". Ars Technica. Archived from the original on June 5, 2017. Unlike most flight sticks for sale on the US market, which tend to be based with varying levels of verisimilitude on US fighter aircraft control columns, the MongoosT-50 is built to mirror the control stick on Russian aircraft—specifically, the fifth-generation Russian Sukhoi Su-35 and PAK FA (T-50).
  33. Tom Senior (7 February 2011). "Volition Would "Commit Murder" to Make Freespace 3". PC Gamer. Retrieved 29 May 2015.
  34. Jonathan Drake (24 September 2011). "Nintendo 64: Launching a Legacy". IGN. Retrieved 9 September 2015.
  35. US Patent 5436640, David W. Reeves, "Video Game and Simulator Joystick Controller with Geared Potentiometer Actuation", published (1995-07-25), issued (1995-07-25), assigned to Thrustmaster, Inc. 
  36. Bijlefeld, Marjolijn (2003). It came from outer space : everyday products and ideas from the space program. Burke, Robert (Robert L.). Westport, Conn.: Greenwood Press. ISBN 0313058415. OCLC 61247073.
  37. Manes, Stephen (1997-02-25). "For Your Games, a Joystick That Pushes Back". The New York Times. ISSN 0362-4331. Archived from the original on May 21, 2023.
  38. Hutsko, Joe (1999-02-04). "When Joystick Starts Shaking, Hang On". The New York Times. ISSN 0362-4331. Archived from the original on May 21, 2023.
  39. "Good Vibrations". Wired. ISSN 1059-1028. Archived from the original on Apr 5, 2023.
  40. Gerry Block (December 18, 2007). "Arcade in a Box Xbox 360 Arcade Stick". IGN. Retrieved 2009-04-21.
  41. "Microsoft Combat Flight Simulator 2, EU-Inside Moves Series, Jeff Van West, Book - Barnes & Noble". Search.barnesandnoble.com. Archived from the original on 2007-09-29. Retrieved 2010-08-18.
  42. Cantrell, Paul. "Helicopter Aviation". www.copters.com. Retrieved 20 December 2015.
  43. Fujifilm X100F steps up to 24.3MP, adds AF joystick, dpreview.com 19 January 2017, retrieved 19 August 2020.
  44. Richard Butler: Panasonic Lumix DMC-LX3 Review, dpreview.com 11 April 2008, retrieved 19 August 2020.
  45. Carey Rose, Rishi Sanyal, Dan Bracaglia: Sony a7 III Review, dpreview.com 23 April 2018, retrieved 19 August 2020.
  46. Darleen Hartley (22 May 2009). "Robotics Improves Movement in Kids with Cerebral Palsy". geek.com. Archived from the original on August 20, 2016. Retrieved 16 September 2015.
  47. Andrew Liszewski (28 April 2012). "If You Don't Find This Video About Robot Wheelchairs for Babies' Heartwarming, You Probably Don't Have a Soul". Gizmodo. Retrieved 17 September 2015.
  48. ^ Croney, Candace C.; Boysen, Sarah T. (11 February 2021). "Acquisition of a Joystick-Operated Video Task by Pigs (Sus scrofa)". Frontiers in Psychology. 12. doi:10.3389/fpsyg.2021.631755. PMC 7928376. PMID 33679560.
  49. Hopkins, William D.; Washburn, David A.; Hyatt, Charles W. (1996). "Video-task acquisition in rhesus monkeys (Macaca mulatta) and chimpanzees (Pan troglodytes): A comparative analysis". Primates. 37 (2): 197–206. doi:10.1007/BF02381407. PMID 11541941.

Further reading

External links

Video game controllers
Controller types
Controller parts
Physical buttons
Sensitive
Related
Basic computer components
Input devices
Pointing devices
Other
Output devices
Removable
data storage
Computer case
Ports
Current
Obsolete
Related
Flight instruments
Pitot-static
Gyroscopic
Navigational
Related topics
Categories: