Misplaced Pages

Conway group Co3

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Sporadic simple group For general background and history of the Conway sporadic groups, see Conway group.
Algebraic structureGroup theory
Group theory
Basic notions
Group homomorphisms
Finite groups
Classification of finite simple groups
Modular groups
  • PSL(2, Z {\displaystyle \mathbb {Z} } )
  • SL(2, Z {\displaystyle \mathbb {Z} } )
Topological and Lie groups Infinite dimensional Lie group
  • O(∞)
  • SU(∞)
  • Sp(∞)
Algebraic groups

In the area of modern algebra known as group theory, the Conway group C o 3 {\displaystyle \mathrm {Co} _{3}} is a sporadic simple group of order

   495,766,656,000
= 2 ···· 11 · 23
≈ 5×10.

History and properties

C o 3 {\displaystyle \mathrm {Co} _{3}} is one of the 26 sporadic groups and was discovered by John Horton Conway (1968, 1969) as the group of automorphisms of the Leech lattice Λ {\displaystyle \Lambda } fixing a lattice vector of type 3, thus length √6. It is thus a subgroup of C o 0 {\displaystyle \mathrm {Co} _{0}} . It is isomorphic to a subgroup of C o 1 {\displaystyle \mathrm {Co} _{1}} . The direct product 2 × C o 3 {\displaystyle 2\times \mathrm {Co} _{3}} is maximal in C o 0 {\displaystyle \mathrm {Co} _{0}} .

The Schur multiplier and the outer automorphism group are both trivial.

Representations

Co3 acts on the unique 23-dimensional even lattice of determinant 4 with no roots, given by the orthogonal complement of a norm 4 vector of the Leech lattice. This gives 23-dimensional representations over any field; over fields of characteristic 2 or 3 this can be reduced to a 22-dimensional faithful representation.

Co3 has a doubly transitive permutation representation on 276 points.

Walter Feit (1974) showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either Z / 2 Z × C o 2 {\displaystyle \mathbb {Z} /2\mathbb {Z} \times \mathrm {Co} _{2}} or Z / 2 Z × C o 3 {\displaystyle \mathbb {Z} /2\mathbb {Z} \times \mathrm {Co} _{3}} .

Maximal subgroups

Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.

Larry Finkelstein (1973) found the 14 conjugacy classes of maximal subgroups of C o 3 {\displaystyle \mathrm {Co} _{3}} as follows:

Maximal subgroups of Co3
No. Structure Order Index Comments
1 McL:2 1,796,256,000
= 2·3·5·7·11
276
= 2·3·23
McL fixes a 2-2-3 triangle. The maximal subgroup also includes reflections of the triangle. C o 3 {\displaystyle \mathrm {Co} _{3}} has a doubly transitive permutation representation on 276 type 2-2-3 triangles having as an edge a type 3 vector fixed by C o 3 {\displaystyle \mathrm {Co} _{3}} .
2 HS 44,352,000
= 2·3·5·7·11
11,178
= 2·3·23
fixes a 2-3-3 triangle
3 U4(3).2 13,063,680
= 2·3·5·7
37,950
= 2·3·5·11·23
4 M23 10,200,960
= 2·3·5·7·11·23
48,600
= 2·3·5
fixes a 2-3-4 triangle
5 3:(2 × M11) 3,849,120
= 2·3·5·11
128,800
= 2·5·7·23
fixes or reflects a 3-3-3 triangle
6 2Sp6(2) 2,903,040
= 2·3·5·7
170,775
= 3·5·11·23
centralizer of an involution of class 2A (trace 8), which moves 240 of the 276 type 2-2-3 triangles
7 U3(5):S3 756,000
= 2·3·5·7
655,776
= 2·3·11·23
8 3
+:4S6
699,840
= 2·3·5
708,400
= 2·5·7·11·23
normalizer of a subgroup of order 3 (class 3A)
9 2A8 322,560
= 2·3·5·7
1,536,975
= 3·5·11·23
10 PSL(3,4):(2 × S3) 241,920
= 2·3·5·7
2,049,300
= 2·3·5·11·23
11 2 × M12 190,080
= 2·3·5·11
2,608,200
= 2·3·5·7·23
centralizer of an involution of class 2B (trace 0), which moves 264 of the 276 type 2-2-3 triangles
12 27,648
= 2·3
17,931,375
= 3·5·7·11·23
13 S3 × PSL(2,8):3 9,072
= 2·3·7
54,648,000
= 2·3·5·11·23
normalizer of a subgroup of order 3 (class 3C, trace 0)
14 A4 × S5 1,440
= 2·3·5
344,282,400
= 2·3·5·7·11·23

Conjugacy classes

Traces of matrices in a standard 24-dimensional representation of Co3 are shown. The names of conjugacy classes are taken from the Atlas of Finite Group Representations. The cycle structures listed act on the 276 2-2-3 triangles that share the fixed type 3 side.

Class Order of centralizer Size of class Trace Cycle type
1A all Co3 1 24
2A 2,903,040 3·5·11·23 8 1,2
2B 190,080 2·3·5·7·23 0 1,2
3A 349,920 2·5·7·11·23 -3 1,3
3B 29,160 2·3·5·7·11·23 6 1,3
3C 4,536 2·3·5·11·23 0 3
4A 23,040 2·3·5·7·11·23 -4 1,2,4
4B 1,536 2·3·5·7·11·23 4 1,2,4
5A 1500 2·3·7·11·23 -1 1,5
5B 300 2·3·5·7·11·23 4 1,5
6A 4,320 2·3·5·7·11·23 5 1,3,6
6B 1,296 2·3·5·7·11·23 -1 2,3,6
6C 216 2·3·5·7·11·23 2 1,2,3,6
6D 108 2·3·5·7·11·23 0 1,2,3,6
6E 72 2·3·5·7·11·23 0 3,6
7A 42 2·3·5·11·23 3 1,7
8A 192 2·3·5·7·11·23 2 1,2,4,8
8B 192 2·3·5·7·11·23 -2 1,2,4,8
8C 32 2·3·5·7·11·23 2 1,2,4,8
9A 162 2·3·5·7·11·23 0 3,9
9B 81 2·3·5·7·11·23 3 1,3,9
10A 60 2·3·5·7·11·23 3 1,5,10
10B 20 2·3·5·7·11·23 0 1,2,5,10
11A 22 2·3·5·7·23 2 1,11 power equivalent
11B 22 2·3·5·7·23 2 1,11
12A 144 2·3·5·7·11·23 -1 1,2,3,6,12
12B 48 2·3·5·7·11·23 1 1,2,3,6,12
12C 36 2·3·5·7·11·23 2 1,2,3,4,6,12
14A 14 2·3·5·11·23 1 1,2,714
15A 15 2·3·5·7·11·23 2 1,5,15
15B 30 2·3·5·7·11·23 1 3,5,15
18A 18 2·3·5·7·11·23 2 6,9,18
20A 20 2·3·5·7·11·23 1 1,5,10,20 power equivalent
20B 20 2·3·5·7·11·23 1 1,5,10,20
21A 21 2·3·5·11·23 0 3,21
22A 22 2·3·5·7·23 0 1,11,22 power equivalent
22B 22 2·3·5·7·23 0 1,11,22
23A 23 2·3·5·7·11 1 23 power equivalent
23B 23 2·3·5·7·11 1 23
24A 24 2·3·5·7·11·23 -1 14,6,1224
24B 24 2·3·5·7·11·23 1 2,3,4,12,24
30A 30 2·3·5·7·11·23 0 1,5,15,30

Generalized Monstrous Moonshine

In analogy to monstrous moonshine for the monster M, for Co3, the relevant McKay-Thompson series is T 4 A ( τ ) {\displaystyle T_{4A}(\tau )} where one can set the constant term a(0) = 24 (OEISA097340),

j 4 A ( τ ) = T 4 A ( τ ) + 24 = ( η 2 ( 2 τ ) η ( τ ) η ( 4 τ ) ) 24 = ( ( η ( τ ) η ( 4 τ ) ) 4 + 4 2 ( η ( 4 τ ) η ( τ ) ) 4 ) 2 = 1 q + 24 + 276 q + 2048 q 2 + 11202 q 3 + 49152 q 4 + {\displaystyle {\begin{aligned}j_{4A}(\tau )&=T_{4A}(\tau )+24\\&={\Big (}{\tfrac {\eta ^{2}(2\tau )}{\eta (\tau )\,\eta (4\tau )}}{\Big )}^{24}\\&={\Big (}{\big (}{\tfrac {\eta (\tau )}{\eta (4\tau )}}{\big )}^{4}+4^{2}{\big (}{\tfrac {\eta (4\tau )}{\eta (\tau )}}{\big )}^{4}{\Big )}^{2}\\&={\frac {1}{q}}+24+276q+2048q^{2}+11202q^{3}+49152q^{4}+\dots \end{aligned}}}

and η(τ) is the Dedekind eta function.

References

  1. Conway et al. (1985)
  2. "ATLAS: Conway group Co3".
  3. "ATLAS: Conway group Co1".
  4. "ATLAS: Co3 — Permutation representation on 276 points".

External links

Categories: