Misplaced Pages

Cross-spectrum

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (April 2011) (Learn how and when to remove this message)

In time series analysis, the cross-spectrum is used as part of a frequency domain analysis of the cross-correlation or cross-covariance between two time series.

Definition

Let ( X t , Y t ) {\displaystyle (X_{t},Y_{t})} represent a pair of stochastic processes that are jointly wide sense stationary with autocovariance functions γ x x {\displaystyle \gamma _{xx}} and γ y y {\displaystyle \gamma _{yy}} and cross-covariance function γ x y {\displaystyle \gamma _{xy}} . Then the cross-spectrum Γ x y {\displaystyle \Gamma _{xy}} is defined as the Fourier transform of γ x y {\displaystyle \gamma _{xy}}

Γ x y ( f ) = F { γ x y } ( f ) = τ = γ x y ( τ ) e 2 π i τ f , {\displaystyle \Gamma _{xy}(f)={\mathcal {F}}\{\gamma _{xy}\}(f)=\sum _{\tau =-\infty }^{\infty }\,\gamma _{xy}(\tau )\,e^{-2\,\pi \,i\,\tau \,f},}

where

γ x y ( τ ) = E [ ( x t μ x ) ( y t + τ μ y ) ] {\displaystyle \gamma _{xy}(\tau )=\operatorname {E} } .

The cross-spectrum has representations as a decomposition into (i) its real part (co-spectrum) and (ii) its imaginary part (quadrature spectrum)

Γ x y ( f ) = Λ x y ( f ) i Ψ x y ( f ) , {\displaystyle \Gamma _{xy}(f)=\Lambda _{xy}(f)-i\Psi _{xy}(f),}

and (ii) in polar coordinates

Γ x y ( f ) = A x y ( f ) e i ϕ x y ( f ) . {\displaystyle \Gamma _{xy}(f)=A_{xy}(f)\,e^{i\phi _{xy}(f)}.}

Here, the amplitude spectrum A x y {\displaystyle A_{xy}} is given by

A x y ( f ) = ( Λ x y ( f ) 2 + Ψ x y ( f ) 2 ) 1 2 , {\displaystyle A_{xy}(f)=(\Lambda _{xy}(f)^{2}+\Psi _{xy}(f)^{2})^{\frac {1}{2}},}

and the phase spectrum Φ x y {\displaystyle \Phi _{xy}} is given by

{ tan 1 ( Ψ x y ( f ) / Λ x y ( f ) ) if  Ψ x y ( f ) 0  and  Λ x y ( f ) 0 0 if  Ψ x y ( f ) = 0  and  Λ x y ( f ) > 0 ± π if  Ψ x y ( f ) = 0  and  Λ x y ( f ) < 0 π / 2 if  Ψ x y ( f ) > 0  and  Λ x y ( f ) = 0 π / 2 if  Ψ x y ( f ) < 0  and  Λ x y ( f ) = 0 {\displaystyle {\begin{cases}\tan ^{-1}(\Psi _{xy}(f)/\Lambda _{xy}(f))&{\text{if }}\Psi _{xy}(f)\neq 0{\text{ and }}\Lambda _{xy}(f)\neq 0\\0&{\text{if }}\Psi _{xy}(f)=0{\text{ and }}\Lambda _{xy}(f)>0\\\pm \pi &{\text{if }}\Psi _{xy}(f)=0{\text{ and }}\Lambda _{xy}(f)<0\\\pi /2&{\text{if }}\Psi _{xy}(f)>0{\text{ and }}\Lambda _{xy}(f)=0\\-\pi /2&{\text{if }}\Psi _{xy}(f)<0{\text{ and }}\Lambda _{xy}(f)=0\\\end{cases}}}

Squared coherency spectrum

The squared coherency spectrum is given by

κ x y ( f ) = A x y 2 Γ x x ( f ) Γ y y ( f ) , {\displaystyle \kappa _{xy}(f)={\frac {A_{xy}^{2}}{\Gamma _{xx}(f)\Gamma _{yy}(f)}},}

which expresses the amplitude spectrum in dimensionless units.

See also

References

  1. von Storch, H.; F. W Zwiers (2001). Statistical analysis in climate research. Cambridge Univ Pr. ISBN 0-521-01230-9.
Categories: