Misplaced Pages

Day convolution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Convolution

In mathematics, specifically in category theory, Day convolution is an operation on functors that can be seen as a categorified version of function convolution. It was first introduced by Brian Day in 1970 in the general context of enriched functor categories.

Day convolution gives a symmetric monoidal structure on H o m ( C , D ) {\displaystyle Hom(\mathbf {C} ,\mathbf {D} )} for two symmetric monoidal categories C , D {\displaystyle \mathbf {C} ,\mathbf {D} } .

Another related version is that Day convolution acts as a tensor product for a monoidal category structure on the category of functors [ C , V ] {\displaystyle } over some monoidal category V {\displaystyle V} .


Definition

First version

Given F , G : C D {\displaystyle F,G\colon \mathbf {C} \to \mathbf {D} } for two symmetric monoidal C , D {\displaystyle \mathbf {C} ,\mathbf {D} } , we define their Day convolution as follows.

It is the left kan extension along C × C C {\displaystyle \mathbf {C} \times \mathbf {C} \to ^{\otimes }\mathbf {C} } of the composition C × C F , G D × D D {\displaystyle \mathbf {C} \times \mathbf {C} \to ^{F,G}\mathbf {D} \times \mathbf {D} \to ^{\otimes }\mathbf {D} }

Thus evaluated on an object O C {\displaystyle O\in \mathbf {C} } , intuitively we get a colimit in D {\displaystyle \mathbf {D} } of F ( x ) G ( y ) {\displaystyle F(x)\otimes G(y)} along approximations of O C {\displaystyle O\in \mathbf {C} } as a pure tensor x y {\displaystyle x\otimes y}

Left kan extensions are computed via coends, which leads to the version below.

Enriched version

Let ( C , c ) {\displaystyle (\mathbf {C} ,\otimes _{c})} be a monoidal category enriched over a symmetric monoidal closed category ( V , ) {\displaystyle (V,\otimes )} . Given two functors F , G : C V {\displaystyle F,G\colon \mathbf {C} \to V} , we define their Day convolution as the following coend.

F d G = x , y C C ( x c y , ) F x G y {\displaystyle F\otimes _{d}G=\int ^{x,y\in \mathbf {C} }\mathbf {C} (x\otimes _{c}y,-)\otimes Fx\otimes Gy}

If c {\displaystyle \otimes _{c}} is symmetric, then d {\displaystyle \otimes _{d}} is also symmetric. We can show this defines an associative monoidal product.

( F d G ) d H c 1 , c 2 ( F d G ) c 1 H c 2 C ( c 1 c c 2 , ) c 1 , c 2 ( c 3 , c 4 F c 3 G c 4 C ( c 3 c c 4 , c 1 ) ) H c 2 C ( c 1 c c 2 , ) c 1 , c 2 , c 3 , c 4 F c 3 G c 4 H c 2 C ( c 3 c c 4 , c 1 ) C ( c 1 c c 2 , ) c 1 , c 2 , c 3 , c 4 F c 3 G c 4 H c 2 C ( c 3 c c 4 c c 2 , ) c 1 , c 2 , c 3 , c 4 F c 3 G c 4 H c 2 C ( c 2 c c 4 , c 1 ) C ( c 3 c c 1 , ) c 1 , c 3 F c 3 ( G d H ) c 1 C ( c 3 c c 1 , ) F d ( G d H ) {\displaystyle {\begin{aligned}&(F\otimes _{d}G)\otimes _{d}H\\\cong {}&\int ^{c_{1},c_{2}}(F\otimes _{d}G)c_{1}\otimes Hc_{2}\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\\cong {}&\int ^{c_{1},c_{2}}\left(\int ^{c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4},c_{1})\right)\otimes Hc_{2}\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4},c_{1})\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4}\otimes _{c}c_{2},-)\\\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{2}\otimes _{c}c_{4},c_{1})\otimes \mathbf {C} (c_{3}\otimes _{c}c_{1},-)\\\cong {}&\int ^{c_{1},c_{3}}Fc_{3}\otimes (G\otimes _{d}H)c_{1}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{1},-)\\\cong {}&F\otimes _{d}(G\otimes _{d}H)\end{aligned}}}

References

  1. Day, Brian (1970). "On closed categories of functors". Reports of the Midwest Category Seminar IV, Lecture Notes in Mathematics. 139: 1–38.
  2. Loregian, Fosco (2021). (Co)end Calculus. p. 51. arXiv:1501.02503. doi:10.1017/9781108778657. ISBN 9781108778657. S2CID 237839003.

External links

Category: