Misplaced Pages

Dedekind–Kummer theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Theorem in algebraic number theory

In algebraic number theory, the Dedekind–Kummer theorem describes how a prime ideal in a Dedekind domain factors over the domain's integral closure. It is named after Richard Dedekind who developed the theorem based on the work of Ernst Kummer.

Statement for number fields

Let K {\displaystyle K} be a number field such that K = Q ( α ) {\displaystyle K=\mathbb {Q} (\alpha )} for α O K {\displaystyle \alpha \in {\mathcal {O}}_{K}} and let f {\displaystyle f} be the minimal polynomial for α {\displaystyle \alpha } over Z [ x ] {\displaystyle \mathbb {Z} } . For any prime p {\displaystyle p} not dividing [ O K : Z [ α ] ] {\displaystyle ]} , write f ( x ) π 1 ( x ) e 1 π g ( x ) e g mod p {\displaystyle f(x)\equiv \pi _{1}(x)^{e_{1}}\cdots \pi _{g}(x)^{e_{g}}\mod p} where π i ( x ) {\displaystyle \pi _{i}(x)} are monic irreducible polynomials in F p [ x ] {\displaystyle \mathbb {F} _{p}} . Then ( p ) = p O K {\displaystyle (p)=p{\mathcal {O}}_{K}} factors into prime ideals as ( p ) = p 1 e 1 p g e g {\displaystyle (p)={\mathfrak {p}}_{1}^{e_{1}}\cdots {\mathfrak {p}}_{g}^{e_{g}}} such that N ( p i ) = p deg π i {\displaystyle N({\mathfrak {p}}_{i})=p^{\deg \pi _{i}}} , where N {\displaystyle N} is the ideal norm.

Statement for Dedekind domains

The Dedekind-Kummer theorem holds more generally than in the situation of number fields: Let o {\displaystyle {\mathcal {o}}} be a Dedekind domain contained in its quotient field K {\displaystyle K} , L / K {\displaystyle L/K} a finite, separable field extension with L = K [ θ ] {\displaystyle L=K} for a suitable generator θ {\displaystyle \theta } and O {\displaystyle {\mathcal {O}}} the integral closure of o {\displaystyle {\mathcal {o}}} . The above situation is just a special case as one can choose o = Z , K = Q , O = O L {\displaystyle {\mathcal {o}}=\mathbb {Z} ,K=\mathbb {Q} ,{\mathcal {O}}={\mathcal {O}}_{L}} ).

If ( 0 ) p o {\displaystyle (0)\neq {\mathfrak {p}}\subseteq {\mathcal {o}}} is a prime ideal coprime to the conductor F = { a O a O o [ θ ] } {\displaystyle {\mathfrak {F}}=\{a\in {\mathcal {O}}\mid a{\mathcal {O}}\subseteq {\mathcal {o}}\}} (i.e. their sum is O {\displaystyle {\mathcal {O}}} ). Consider the minimal polynomial f o [ x ] {\displaystyle f\in {\mathcal {o}}} of θ {\displaystyle \theta } . The polynomial f ¯ ( o / p ) [ x ] {\displaystyle {\overline {f}}\in ({\mathcal {o}}/{\mathfrak {p}})} has the decomposition f ¯ = f 1 ¯ e 1 f r ¯ e r {\displaystyle {\overline {f}}={\overline {f_{1}}}^{e_{1}}\cdots {\overline {f_{r}}}^{e_{r}}} with pairwise distinct irreducible polynomials f i ¯ {\displaystyle {\overline {f_{i}}}} . The factorization of p {\displaystyle {\mathfrak {p}}} into prime ideals over O {\displaystyle {\mathcal {O}}} is then given by p = P 1 e 1 P r e r {\displaystyle {\mathfrak {p}}={\mathfrak {P}}_{1}^{e_{1}}\cdots {\mathfrak {P}}_{r}^{e_{r}}} where P i = p O + ( f i ( θ ) O ) {\displaystyle {\mathfrak {P}}_{i}={\mathfrak {p}}{\mathcal {O}}+(f_{i}(\theta ){\mathcal {O}})} and the f i {\displaystyle f_{i}} are the polynomials f i ¯ {\displaystyle {\overline {f_{i}}}} lifted to o [ x ] {\displaystyle {\mathcal {o}}} .

References

  1. ^ Neukirch, Jürgen (1999). Algebraic number theory. Berlin: Springer. pp. 48–49. ISBN 3-540-65399-6. OCLC 41039802.
  2. Conrad, Keith. "FACTORING AFTER DEDEKIND" (PDF).
Category: