Misplaced Pages

Dependence relation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Not to be confused with Dependency relation, which is a binary relation that is symmetric and reflexive.
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Dependence relation" – news · newspapers · books · scholar · JSTOR (March 2023) (Learn how and when to remove this message)

In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.

Let X {\displaystyle X} be a set. A (binary) relation {\displaystyle \triangleleft } between an element a {\displaystyle a} of X {\displaystyle X} and a subset S {\displaystyle S} of X {\displaystyle X} is called a dependence relation, written a S {\displaystyle a\triangleleft S} , if it satisfies the following properties:

  1. if a S {\displaystyle a\in S} , then a S {\displaystyle a\triangleleft S} ;
  2. if a S {\displaystyle a\triangleleft S} , then there is a finite subset S 0 {\displaystyle S_{0}} of S {\displaystyle S} , such that a S 0 {\displaystyle a\triangleleft S_{0}} ;
  3. if T {\displaystyle T} is a subset of X {\displaystyle X} such that b S {\displaystyle b\in S} implies b T {\displaystyle b\triangleleft T} , then a S {\displaystyle a\triangleleft S} implies a T {\displaystyle a\triangleleft T} ;
  4. if a S {\displaystyle a\triangleleft S} but a S { b } {\displaystyle a\ntriangleleft S-\lbrace b\rbrace } for some b S {\displaystyle b\in S} , then b ( S { b } ) { a } {\displaystyle b\triangleleft (S-\lbrace b\rbrace )\cup \lbrace a\rbrace } .

Given a dependence relation {\displaystyle \triangleleft } on X {\displaystyle X} , a subset S {\displaystyle S} of X {\displaystyle X} is said to be independent if a S { a } {\displaystyle a\ntriangleleft S-\lbrace a\rbrace } for all a S . {\displaystyle a\in S.} If S T {\displaystyle S\subseteq T} , then S {\displaystyle S} is said to span T {\displaystyle T} if t S {\displaystyle t\triangleleft S} for every t T . {\displaystyle t\in T.} S {\displaystyle S} is said to be a basis of X {\displaystyle X} if S {\displaystyle S} is independent and S {\displaystyle S} spans X . {\displaystyle X.}

If X {\displaystyle X} is a non-empty set with a dependence relation {\displaystyle \triangleleft } , then X {\displaystyle X} always has a basis with respect to . {\displaystyle \triangleleft .} Furthermore, any two bases of X {\displaystyle X} have the same cardinality.

If a S {\displaystyle a\triangleleft S} and S T {\displaystyle S\subseteq T} , then a T {\displaystyle a\triangleleft T} , using property 3. and 1.

Examples

  • Let V {\displaystyle V} be a vector space over a field F . {\displaystyle F.} The relation {\displaystyle \triangleleft } , defined by υ S {\displaystyle \upsilon \triangleleft S} if υ {\displaystyle \upsilon } is in the subspace spanned by S {\displaystyle S} , is a dependence relation. This is equivalent to the definition of linear dependence.
  • Let K {\displaystyle K} be a field extension of F . {\displaystyle F.} Define {\displaystyle \triangleleft } by α S {\displaystyle \alpha \triangleleft S} if α {\displaystyle \alpha } is algebraic over F ( S ) . {\displaystyle F(S).} Then {\displaystyle \triangleleft } is a dependence relation. This is equivalent to the definition of algebraic dependence.

See also

This article incorporates material from Dependence relation on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Categories: